| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrefrel5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 12-Dec-2023.) |
| Ref | Expression |
|---|---|
| dfrefrel5 | ⊢ ( RefRel 𝑅 ↔ (∀𝑥 ∈ (dom 𝑅 ∩ ran 𝑅)𝑥𝑅𝑥 ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrel2 38457 | . 2 ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | |
| 2 | ref5 38255 | . 2 ⊢ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ∀𝑥 ∈ (dom 𝑅 ∩ ran 𝑅)𝑥𝑅𝑥) | |
| 3 | 1, 2 | bianbi 627 | 1 ⊢ ( RefRel 𝑅 ↔ (∀𝑥 ∈ (dom 𝑅 ∩ ran 𝑅)𝑥𝑅𝑥 ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3050 ∩ cin 3932 ⊆ wss 3933 class class class wbr 5125 I cid 5559 × cxp 5665 dom cdm 5667 ran crn 5668 Rel wrel 5672 RefRel wrefrel 38129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-refrel 38454 |
| This theorem is referenced by: refrelressn 38466 |
| Copyright terms: Public domain | W3C validator |