| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrefrel5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 12-Dec-2023.) |
| Ref | Expression |
|---|---|
| dfrefrel5 | ⊢ ( RefRel 𝑅 ↔ (∀𝑥 ∈ (dom 𝑅 ∩ ran 𝑅)𝑥𝑅𝑥 ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrel2 38500 | . 2 ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | |
| 2 | ref5 38298 | . 2 ⊢ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ∀𝑥 ∈ (dom 𝑅 ∩ ran 𝑅)𝑥𝑅𝑥) | |
| 3 | 1, 2 | bianbi 627 | 1 ⊢ ( RefRel 𝑅 ↔ (∀𝑥 ∈ (dom 𝑅 ∩ ran 𝑅)𝑥𝑅𝑥 ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wral 3046 ∩ cin 3921 ⊆ wss 3922 class class class wbr 5115 I cid 5540 × cxp 5644 dom cdm 5646 ran crn 5647 Rel wrel 5651 RefRel wrefrel 38172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-dm 5656 df-rn 5657 df-res 5658 df-refrel 38497 |
| This theorem is referenced by: refrelressn 38509 |
| Copyright terms: Public domain | W3C validator |