MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo4 Structured version   Visualization version   GIF version

Theorem rmo4 3752
Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
rmo4 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem rmo4
StepHypRef Expression
1 df-rmo 3388 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 an4 655 . . . . . . . . 9 (((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝜑𝜓)))
3 ancom 460 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴) ↔ (𝑦𝐴𝑥𝐴))
42, 3bianbi 626 . . . . . . . 8 (((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) ↔ ((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)))
54imbi1i 349 . . . . . . 7 ((((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ (((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)) → 𝑥 = 𝑦))
6 impexp 450 . . . . . . 7 ((((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)) → 𝑥 = 𝑦) ↔ ((𝑦𝐴𝑥𝐴) → ((𝜑𝜓) → 𝑥 = 𝑦)))
7 impexp 450 . . . . . . 7 (((𝑦𝐴𝑥𝐴) → ((𝜑𝜓) → 𝑥 = 𝑦)) ↔ (𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
85, 6, 73bitri 297 . . . . . 6 ((((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ (𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
98albii 1817 . . . . 5 (∀𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
10 df-ral 3068 . . . . 5 (∀𝑦𝐴 (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦)) ↔ ∀𝑦(𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
11 r19.21v 3186 . . . . 5 (∀𝑦𝐴 (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦)) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
129, 10, 113bitr2i 299 . . . 4 (∀𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
1312albii 1817 . . 3 (∀𝑥𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
14 eleq1w 2827 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
15 rmo4.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
1614, 15anbi12d 631 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
1716mo4 2569 . . 3 (∃*𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦))
18 df-ral 3068 . . 3 (∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
1913, 17, 183bitr4i 303 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
201, 19bitri 275 1 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wcel 2108  ∃*wmo 2541  wral 3067  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-clel 2819  df-ral 3068  df-rmo 3388
This theorem is referenced by:  reu4  3753  disjor  5148  somo  5646  nnasmo  8719  supmo  9521  infmo  9564  sqrmo  15300  catideu  17733  poslubmo  18481  posglbmo  18482  mgmidmo  18698  mndinvmod  18802  lspextmo  21078  evlseu  22130  ply1divmo  26195  2sqmo  27499  divsmo  28228  tghilberti2  28664  foot  28748  mideu  28764  cvmliftmo  35252  r1peuqusdeg1  35611  hilbert1.2  36119  poimirlem1  37581  poimirlem13  37593  poimirlem14  37594  poimirlem18  37598  poimirlem21  37601  inecmo  38311  idomsubgmo  43154
  Copyright terms: Public domain W3C validator