Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo4 Structured version   Visualization version   GIF version

Theorem rmo4 3672
 Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
rmo4 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem rmo4
StepHypRef Expression
1 df-rmo 3117 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 an4 655 . . . . . . . . 9 (((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝜑𝜓)))
3 ancom 464 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) ↔ (𝑦𝐴𝑥𝐴))
43anbi1i 626 . . . . . . . . 9 (((𝑥𝐴𝑦𝐴) ∧ (𝜑𝜓)) ↔ ((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)))
52, 4bitri 278 . . . . . . . 8 (((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) ↔ ((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)))
65imbi1i 353 . . . . . . 7 ((((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ (((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)) → 𝑥 = 𝑦))
7 impexp 454 . . . . . . 7 ((((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)) → 𝑥 = 𝑦) ↔ ((𝑦𝐴𝑥𝐴) → ((𝜑𝜓) → 𝑥 = 𝑦)))
8 impexp 454 . . . . . . 7 (((𝑦𝐴𝑥𝐴) → ((𝜑𝜓) → 𝑥 = 𝑦)) ↔ (𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
96, 7, 83bitri 300 . . . . . 6 ((((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ (𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
109albii 1821 . . . . 5 (∀𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
11 df-ral 3114 . . . . 5 (∀𝑦𝐴 (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦)) ↔ ∀𝑦(𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
12 r19.21v 3145 . . . . 5 (∀𝑦𝐴 (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦)) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
1310, 11, 123bitr2i 302 . . . 4 (∀𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
1413albii 1821 . . 3 (∀𝑥𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
15 eleq1w 2875 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
16 rmo4.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
1715, 16anbi12d 633 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
1817mo4 2628 . . 3 (∃*𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦))
19 df-ral 3114 . . 3 (∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
2014, 18, 193bitr4i 306 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
211, 20bitri 278 1 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   ∈ wcel 2112  ∃*wmo 2599  ∀wral 3109  ∃*wrmo 3112 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-mo 2601  df-clel 2873  df-ral 3114  df-rmo 3117 This theorem is referenced by:  reu4  3673  disjor  5013  somo  5478  supmo  8904  infmo  8947  sqrmo  14607  catideu  16942  poslubmo  17752  posglbmo  17753  mgmidmo  17866  mndinvmod  17937  lspextmo  19825  evlseu  20759  ply1divmo  24740  2sqmo  26025  tghilberti2  26436  foot  26520  mideu  26536  cvmliftmo  32645  hilbert1.2  33730  poimirlem1  35057  poimirlem13  35069  poimirlem14  35070  poimirlem18  35074  poimirlem21  35077  inecmo  35768  idomsubgmo  40139
 Copyright terms: Public domain W3C validator