MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo4 Structured version   Visualization version   GIF version

Theorem rmo4 3722
Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
rmo4 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem rmo4
StepHypRef Expression
1 df-rmo 3375 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 an4 654 . . . . . . . . 9 (((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝜑𝜓)))
3 ancom 461 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) ↔ (𝑦𝐴𝑥𝐴))
43anbi1i 624 . . . . . . . . 9 (((𝑥𝐴𝑦𝐴) ∧ (𝜑𝜓)) ↔ ((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)))
52, 4bitri 274 . . . . . . . 8 (((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) ↔ ((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)))
65imbi1i 349 . . . . . . 7 ((((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ (((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)) → 𝑥 = 𝑦))
7 impexp 451 . . . . . . 7 ((((𝑦𝐴𝑥𝐴) ∧ (𝜑𝜓)) → 𝑥 = 𝑦) ↔ ((𝑦𝐴𝑥𝐴) → ((𝜑𝜓) → 𝑥 = 𝑦)))
8 impexp 451 . . . . . . 7 (((𝑦𝐴𝑥𝐴) → ((𝜑𝜓) → 𝑥 = 𝑦)) ↔ (𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
96, 7, 83bitri 296 . . . . . 6 ((((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ (𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
109albii 1821 . . . . 5 (∀𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
11 df-ral 3061 . . . . 5 (∀𝑦𝐴 (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦)) ↔ ∀𝑦(𝑦𝐴 → (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦))))
12 r19.21v 3178 . . . . 5 (∀𝑦𝐴 (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦)) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
1310, 11, 123bitr2i 298 . . . 4 (∀𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
1413albii 1821 . . 3 (∀𝑥𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
15 eleq1w 2815 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
16 rmo4.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
1715, 16anbi12d 631 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
1817mo4 2559 . . 3 (∃*𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝑦(((𝑥𝐴𝜑) ∧ (𝑦𝐴𝜓)) → 𝑥 = 𝑦))
19 df-ral 3061 . . 3 (∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦)))
2014, 18, 193bitr4i 302 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
211, 20bitri 274 1 (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539  wcel 2106  ∃*wmo 2531  wral 3060  ∃*wrmo 3374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-mo 2533  df-clel 2809  df-ral 3061  df-rmo 3375
This theorem is referenced by:  reu4  3723  disjor  5121  somo  5618  nnasmo  8645  supmo  9429  infmo  9472  sqrmo  15180  catideu  17601  poslubmo  18346  posglbmo  18347  mgmidmo  18561  mndinvmod  18632  lspextmo  20616  evlseu  21575  ply1divmo  25582  2sqmo  26867  divsmo  27542  tghilberti2  27754  foot  27838  mideu  27854  cvmliftmo  34104  hilbert1.2  34955  poimirlem1  36291  poimirlem13  36303  poimirlem14  36304  poimirlem18  36308  poimirlem21  36311  inecmo  37027  idomsubgmo  41709
  Copyright terms: Public domain W3C validator