Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nelopab | Structured version Visualization version GIF version |
Description: The empty set is never an
element in an ordered-pair class abstraction.
(Contributed by Alexander van der Vekens, 5-Nov-2017.) (Proof shortened
by BJ, 22-Jul-2023.)
TODO: move to the main section when one can reorder sections so that we can use relopab 5668 (this is a very limited reordering). |
Ref | Expression |
---|---|
bj-0nelopab | ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 5668 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 0nelrel0 5583 | . 2 ⊢ (Rel {〈𝑥, 𝑦〉 ∣ 𝜑} → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2114 ∅c0 4211 {copab 5092 Rel wrel 5530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ne 2935 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-opab 5093 df-xp 5531 df-rel 5532 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |