| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nelopab | Structured version Visualization version GIF version | ||
| Description: The empty set is never an
element in an ordered-pair class abstraction.
(Contributed by Alexander van der Vekens, 5-Nov-2017.) (Proof shortened
by BJ, 22-Jul-2023.)
TODO: move to the main section when one can reorder sections so that we can use relopab 5808 (this is a very limited reordering). |
| Ref | Expression |
|---|---|
| bj-0nelopab | ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab 5808 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 0nelrel0 5719 | . 2 ⊢ (Rel {〈𝑥, 𝑦〉 ∣ 𝜑} → ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∅c0 4313 {copab 5186 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-xp 5665 df-rel 5666 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |