Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nelopab Structured version   Visualization version   GIF version

Theorem bj-0nelopab 35139
Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.) (Proof shortened by BJ, 22-Jul-2023.)

TODO: move to the main section when one can reorder sections so that we can use relopab 5722 (this is a very limited reordering).

Assertion
Ref Expression
bj-0nelopab ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem bj-0nelopab
StepHypRef Expression
1 relopab 5722 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 0nelrel0 5637 . 2 (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
31, 2ax-mp 5 1 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2112  c0 4254  {copab 5132  Rel wrel 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5585  df-rel 5586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator