Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nmoore Structured version   Visualization version   GIF version

Theorem bj-0nmoore 36500
Description: The empty set is not a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-0nmoore ¬ ∅ ∈ Moore

Proof of Theorem bj-0nmoore
StepHypRef Expression
1 noel 4325 . 2 ¬ ∅ ∈ ∅
2 bj-ismoored0 36494 . 2 (∅ ∈ Moore ∅ ∈ ∅)
31, 2mto 196 1 ¬ ∅ ∈ Moore
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2098  c0 4317   cuni 4902  Moorecmoore 36491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-in 3950  df-ss 3960  df-nul 4318  df-pw 4599  df-uni 4903  df-int 4944  df-bj-moore 36492
This theorem is referenced by:  bj-snmooreb  36502
  Copyright terms: Public domain W3C validator