Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nmoore Structured version   Visualization version   GIF version

Theorem bj-0nmoore 35283
Description: The empty set is not a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-0nmoore ¬ ∅ ∈ Moore

Proof of Theorem bj-0nmoore
StepHypRef Expression
1 noel 4264 . 2 ¬ ∅ ∈ ∅
2 bj-ismoored0 35277 . 2 (∅ ∈ Moore ∅ ∈ ∅)
31, 2mto 196 1 ¬ ∅ ∈ Moore
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2106  c0 4256   cuni 4839  Moorecmoore 35274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-uni 4840  df-int 4880  df-bj-moore 35275
This theorem is referenced by:  bj-snmooreb  35285
  Copyright terms: Public domain W3C validator