| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nmoore | Structured version Visualization version GIF version | ||
| Description: The empty set is not a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
| Ref | Expression |
|---|---|
| bj-0nmoore | ⊢ ¬ ∅ ∈ Moore |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4313 | . 2 ⊢ ¬ ∪ ∅ ∈ ∅ | |
| 2 | bj-ismoored0 37124 | . 2 ⊢ (∅ ∈ Moore → ∪ ∅ ∈ ∅) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ ∅ ∈ Moore |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2108 ∅c0 4308 ∪ cuni 4883 Moorecmoore 37121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-in 3933 df-ss 3943 df-nul 4309 df-pw 4577 df-uni 4884 df-int 4923 df-bj-moore 37122 |
| This theorem is referenced by: bj-snmooreb 37132 |
| Copyright terms: Public domain | W3C validator |