Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nmoore Structured version   Visualization version   GIF version

Theorem bj-0nmoore 37130
Description: The empty set is not a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-0nmoore ¬ ∅ ∈ Moore

Proof of Theorem bj-0nmoore
StepHypRef Expression
1 noel 4313 . 2 ¬ ∅ ∈ ∅
2 bj-ismoored0 37124 . 2 (∅ ∈ Moore ∅ ∈ ∅)
31, 2mto 197 1 ¬ ∅ ∈ Moore
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  c0 4308   cuni 4883  Moorecmoore 37121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-in 3933  df-ss 3943  df-nul 4309  df-pw 4577  df-uni 4884  df-int 4923  df-bj-moore 37122
This theorem is referenced by:  bj-snmooreb  37132
  Copyright terms: Public domain W3C validator