Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snmooreb Structured version   Visualization version   GIF version

Theorem bj-snmooreb 36485
Description: A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021.) (Proof shortened by BJ, 10-Apr-2024.)
Assertion
Ref Expression
bj-snmooreb (𝐴 ∈ V ↔ {𝐴} ∈ Moore)

Proof of Theorem bj-snmooreb
StepHypRef Expression
1 bj-snmoore 36484 . 2 (𝐴 ∈ V → {𝐴} ∈ Moore)
2 snprc 4713 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
32biimpi 215 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
4 bj-0nmoore 36483 . . . . 5 ¬ ∅ ∈ Moore
54a1i 11 . . . 4 𝐴 ∈ V → ¬ ∅ ∈ Moore)
63, 5eqneltrd 2845 . . 3 𝐴 ∈ V → ¬ {𝐴} ∈ Moore)
76con4i 114 . 2 ({𝐴} ∈ Moore𝐴 ∈ V)
81, 7impbii 208 1 (𝐴 ∈ V ↔ {𝐴} ∈ Moore)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1533  wcel 2098  Vcvv 3466  c0 4314  {csn 4620  Moorecmoore 36474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-pw 4596  df-sn 4621  df-pr 4623  df-uni 4900  df-int 4941  df-bj-moore 36475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator