Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snmooreb Structured version   Visualization version   GIF version

Theorem bj-snmooreb 35285
Description: A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021.) (Proof shortened by BJ, 10-Apr-2024.)
Assertion
Ref Expression
bj-snmooreb (𝐴 ∈ V ↔ {𝐴} ∈ Moore)

Proof of Theorem bj-snmooreb
StepHypRef Expression
1 bj-snmoore 35284 . 2 (𝐴 ∈ V → {𝐴} ∈ Moore)
2 snprc 4653 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
32biimpi 215 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
4 bj-0nmoore 35283 . . . . 5 ¬ ∅ ∈ Moore
54a1i 11 . . . 4 𝐴 ∈ V → ¬ ∅ ∈ Moore)
63, 5eqneltrd 2858 . . 3 𝐴 ∈ V → ¬ {𝐴} ∈ Moore)
76con4i 114 . 2 ({𝐴} ∈ Moore𝐴 ∈ V)
81, 7impbii 208 1 (𝐴 ∈ V ↔ {𝐴} ∈ Moore)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  {csn 4561  Moorecmoore 35274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562  df-pr 4564  df-uni 4840  df-int 4880  df-bj-moore 35275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator