![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snmooreb | Structured version Visualization version GIF version |
Description: A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021.) (Proof shortened by BJ, 10-Apr-2024.) |
Ref | Expression |
---|---|
bj-snmooreb | ⊢ (𝐴 ∈ V ↔ {𝐴} ∈ Moore) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snmoore 36484 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ Moore) | |
2 | snprc 4713 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
3 | 2 | biimpi 215 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
4 | bj-0nmoore 36483 | . . . . 5 ⊢ ¬ ∅ ∈ Moore | |
5 | 4 | a1i 11 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ ∅ ∈ Moore) |
6 | 3, 5 | eqneltrd 2845 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ∈ Moore) |
7 | 6 | con4i 114 | . 2 ⊢ ({𝐴} ∈ Moore → 𝐴 ∈ V) |
8 | 1, 7 | impbii 208 | 1 ⊢ (𝐴 ∈ V ↔ {𝐴} ∈ Moore) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∅c0 4314 {csn 4620 Moorecmoore 36474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-pw 4596 df-sn 4621 df-pr 4623 df-uni 4900 df-int 4941 df-bj-moore 36475 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |