Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snmooreb | Structured version Visualization version GIF version |
Description: A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021.) (Proof shortened by BJ, 10-Apr-2024.) |
Ref | Expression |
---|---|
bj-snmooreb | ⊢ (𝐴 ∈ V ↔ {𝐴} ∈ Moore) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snmoore 35211 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ Moore) | |
2 | snprc 4650 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
3 | 2 | biimpi 215 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
4 | bj-0nmoore 35210 | . . . . 5 ⊢ ¬ ∅ ∈ Moore | |
5 | 4 | a1i 11 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ ∅ ∈ Moore) |
6 | 3, 5 | eqneltrd 2858 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ∈ Moore) |
7 | 6 | con4i 114 | . 2 ⊢ ({𝐴} ∈ Moore → 𝐴 ∈ V) |
8 | 1, 7 | impbii 208 | 1 ⊢ (𝐴 ∈ V ↔ {𝐴} ∈ Moore) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {csn 4558 Moorecmoore 35201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-int 4877 df-bj-moore 35202 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |