Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snmooreb Structured version   Visualization version   GIF version

Theorem bj-snmooreb 37109
Description: A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021.) (Proof shortened by BJ, 10-Apr-2024.)
Assertion
Ref Expression
bj-snmooreb (𝐴 ∈ V ↔ {𝐴} ∈ Moore)

Proof of Theorem bj-snmooreb
StepHypRef Expression
1 bj-snmoore 37108 . 2 (𝐴 ∈ V → {𝐴} ∈ Moore)
2 snprc 4684 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
32biimpi 216 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
4 bj-0nmoore 37107 . . . . 5 ¬ ∅ ∈ Moore
54a1i 11 . . . 4 𝐴 ∈ V → ¬ ∅ ∈ Moore)
63, 5eqneltrd 2849 . . 3 𝐴 ∈ V → ¬ {𝐴} ∈ Moore)
76con4i 114 . 2 ({𝐴} ∈ Moore𝐴 ∈ V)
81, 7impbii 209 1 (𝐴 ∈ V ↔ {𝐴} ∈ Moore)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  {csn 4592  Moorecmoore 37098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-pw 4568  df-sn 4593  df-pr 4595  df-uni 4875  df-int 4914  df-bj-moore 37099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator