| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snmooreb | Structured version Visualization version GIF version | ||
| Description: A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021.) (Proof shortened by BJ, 10-Apr-2024.) |
| Ref | Expression |
|---|---|
| bj-snmooreb | ⊢ (𝐴 ∈ V ↔ {𝐴} ∈ Moore) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-snmoore 37155 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ Moore) | |
| 2 | snprc 4667 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 4 | bj-0nmoore 37154 | . . . . 5 ⊢ ¬ ∅ ∈ Moore | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ ∅ ∈ Moore) |
| 6 | 3, 5 | eqneltrd 2851 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ {𝐴} ∈ Moore) |
| 7 | 6 | con4i 114 | . 2 ⊢ ({𝐴} ∈ Moore → 𝐴 ∈ V) |
| 8 | 1, 7 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ {𝐴} ∈ Moore) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 {csn 4573 Moorecmoore 37145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-int 4896 df-bj-moore 37146 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |