Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snmooreb Structured version   Visualization version   GIF version

Theorem bj-snmooreb 37075
Description: A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021.) (Proof shortened by BJ, 10-Apr-2024.)
Assertion
Ref Expression
bj-snmooreb (𝐴 ∈ V ↔ {𝐴} ∈ Moore)

Proof of Theorem bj-snmooreb
StepHypRef Expression
1 bj-snmoore 37074 . 2 (𝐴 ∈ V → {𝐴} ∈ Moore)
2 snprc 4677 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
32biimpi 216 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
4 bj-0nmoore 37073 . . . . 5 ¬ ∅ ∈ Moore
54a1i 11 . . . 4 𝐴 ∈ V → ¬ ∅ ∈ Moore)
63, 5eqneltrd 2848 . . 3 𝐴 ∈ V → ¬ {𝐴} ∈ Moore)
76con4i 114 . 2 ({𝐴} ∈ Moore𝐴 ∈ V)
81, 7impbii 209 1 (𝐴 ∈ V ↔ {𝐴} ∈ Moore)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  {csn 4585  Moorecmoore 37064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-pw 4561  df-sn 4586  df-pr 4588  df-uni 4868  df-int 4907  df-bj-moore 37065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator