| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-discrmoore | Structured version Visualization version GIF version | ||
| Description: The powerclass 𝒫 𝐴 is a Moore collection if and only if 𝐴 is a set. It is then called the discrete Moore collection. (Contributed by BJ, 9-Dec-2021.) |
| Ref | Expression |
|---|---|
| bj-discrmoore | ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ Moore) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unipw 5389 | . . . . . 6 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 2 | 1 | ineq1i 4163 | . . . . 5 ⊢ (∪ 𝒫 𝐴 ∩ ∩ 𝑥) = (𝐴 ∩ ∩ 𝑥) |
| 3 | inex1g 5255 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ∈ V) | |
| 4 | inss1 4184 | . . . . . . 7 ⊢ (𝐴 ∩ ∩ 𝑥) ⊆ 𝐴 | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ⊆ 𝐴) |
| 6 | 3, 5 | elpwd 4553 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
| 7 | 2, 6 | eqeltrid 2835 | . . . 4 ⊢ (𝐴 ∈ V → (∪ 𝒫 𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑥 ⊆ 𝒫 𝐴) → (∪ 𝒫 𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
| 9 | 8 | bj-ismooredr 37153 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ Moore) |
| 10 | pwexr 7698 | . 2 ⊢ (𝒫 𝐴 ∈ Moore → 𝐴 ∈ V) | |
| 11 | 9, 10 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ Moore) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 ∩ cint 4895 Moorecmoore 37147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-int 4896 df-bj-moore 37148 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |