| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-discrmoore | Structured version Visualization version GIF version | ||
| Description: The powerclass 𝒫 𝐴 is a Moore collection if and only if 𝐴 is a set. It is then called the discrete Moore collection. (Contributed by BJ, 9-Dec-2021.) |
| Ref | Expression |
|---|---|
| bj-discrmoore | ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ Moore) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unipw 5425 | . . . . . 6 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 2 | 1 | ineq1i 4191 | . . . . 5 ⊢ (∪ 𝒫 𝐴 ∩ ∩ 𝑥) = (𝐴 ∩ ∩ 𝑥) |
| 3 | inex1g 5289 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ∈ V) | |
| 4 | inss1 4212 | . . . . . . 7 ⊢ (𝐴 ∩ ∩ 𝑥) ⊆ 𝐴 | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ⊆ 𝐴) |
| 6 | 3, 5 | elpwd 4581 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
| 7 | 2, 6 | eqeltrid 2838 | . . . 4 ⊢ (𝐴 ∈ V → (∪ 𝒫 𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑥 ⊆ 𝒫 𝐴) → (∪ 𝒫 𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
| 9 | 8 | bj-ismooredr 37127 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ Moore) |
| 10 | pwexr 7759 | . 2 ⊢ (𝒫 𝐴 ∈ Moore → 𝐴 ∈ V) | |
| 11 | 9, 10 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ Moore) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 ∩ cint 4922 Moorecmoore 37121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-pw 4577 df-sn 4602 df-pr 4604 df-uni 4884 df-int 4923 df-bj-moore 37122 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |