Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-discrmoore Structured version   Visualization version   GIF version

Theorem bj-discrmoore 36590
Description: The powerclass 𝒫 𝐴 is a Moore collection if and only if 𝐴 is a set. It is then called the discrete Moore collection. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-discrmoore (𝐴 ∈ V ↔ 𝒫 𝐴Moore)

Proof of Theorem bj-discrmoore
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unipw 5452 . . . . . 6 𝒫 𝐴 = 𝐴
21ineq1i 4208 . . . . 5 ( 𝒫 𝐴 𝑥) = (𝐴 𝑥)
3 inex1g 5319 . . . . . 6 (𝐴 ∈ V → (𝐴 𝑥) ∈ V)
4 inss1 4229 . . . . . . 7 (𝐴 𝑥) ⊆ 𝐴
54a1i 11 . . . . . 6 (𝐴 ∈ V → (𝐴 𝑥) ⊆ 𝐴)
63, 5elpwd 4609 . . . . 5 (𝐴 ∈ V → (𝐴 𝑥) ∈ 𝒫 𝐴)
72, 6eqeltrid 2833 . . . 4 (𝐴 ∈ V → ( 𝒫 𝐴 𝑥) ∈ 𝒫 𝐴)
87adantr 480 . . 3 ((𝐴 ∈ V ∧ 𝑥 ⊆ 𝒫 𝐴) → ( 𝒫 𝐴 𝑥) ∈ 𝒫 𝐴)
98bj-ismooredr 36588 . 2 (𝐴 ∈ V → 𝒫 𝐴Moore)
10 pwexr 7767 . 2 (𝒫 𝐴Moore𝐴 ∈ V)
119, 10impbii 208 1 (𝐴 ∈ V ↔ 𝒫 𝐴Moore)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2099  Vcvv 3471  cin 3946  wss 3947  𝒫 cpw 4603   cuni 4908   cint 4949  Moorecmoore 36582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-pw 4605  df-sn 4630  df-pr 4632  df-uni 4909  df-int 4950  df-bj-moore 36583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator