Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-discrmoore Structured version   Visualization version   GIF version

Theorem bj-discrmoore 37129
Description: The powerclass 𝒫 𝐴 is a Moore collection if and only if 𝐴 is a set. It is then called the discrete Moore collection. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-discrmoore (𝐴 ∈ V ↔ 𝒫 𝐴Moore)

Proof of Theorem bj-discrmoore
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unipw 5425 . . . . . 6 𝒫 𝐴 = 𝐴
21ineq1i 4191 . . . . 5 ( 𝒫 𝐴 𝑥) = (𝐴 𝑥)
3 inex1g 5289 . . . . . 6 (𝐴 ∈ V → (𝐴 𝑥) ∈ V)
4 inss1 4212 . . . . . . 7 (𝐴 𝑥) ⊆ 𝐴
54a1i 11 . . . . . 6 (𝐴 ∈ V → (𝐴 𝑥) ⊆ 𝐴)
63, 5elpwd 4581 . . . . 5 (𝐴 ∈ V → (𝐴 𝑥) ∈ 𝒫 𝐴)
72, 6eqeltrid 2838 . . . 4 (𝐴 ∈ V → ( 𝒫 𝐴 𝑥) ∈ 𝒫 𝐴)
87adantr 480 . . 3 ((𝐴 ∈ V ∧ 𝑥 ⊆ 𝒫 𝐴) → ( 𝒫 𝐴 𝑥) ∈ 𝒫 𝐴)
98bj-ismooredr 37127 . 2 (𝐴 ∈ V → 𝒫 𝐴Moore)
10 pwexr 7759 . 2 (𝒫 𝐴Moore𝐴 ∈ V)
119, 10impbii 209 1 (𝐴 ∈ V ↔ 𝒫 𝐴Moore)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  Vcvv 3459  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883   cint 4922  Moorecmoore 37121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-pw 4577  df-sn 4602  df-pr 4604  df-uni 4884  df-int 4923  df-bj-moore 37122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator