![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-discrmoore | Structured version Visualization version GIF version |
Description: The powerclass 𝒫 𝐴 is a Moore collection if and only if 𝐴 is a set. It is then called the discrete Moore collection. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-discrmoore | ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ Moore) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw 5452 | . . . . . 6 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
2 | 1 | ineq1i 4208 | . . . . 5 ⊢ (∪ 𝒫 𝐴 ∩ ∩ 𝑥) = (𝐴 ∩ ∩ 𝑥) |
3 | inex1g 5319 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ∈ V) | |
4 | inss1 4229 | . . . . . . 7 ⊢ (𝐴 ∩ ∩ 𝑥) ⊆ 𝐴 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ⊆ 𝐴) |
6 | 3, 5 | elpwd 4609 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
7 | 2, 6 | eqeltrid 2833 | . . . 4 ⊢ (𝐴 ∈ V → (∪ 𝒫 𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑥 ⊆ 𝒫 𝐴) → (∪ 𝒫 𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
9 | 8 | bj-ismooredr 36588 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ Moore) |
10 | pwexr 7767 | . 2 ⊢ (𝒫 𝐴 ∈ Moore → 𝐴 ∈ V) | |
11 | 9, 10 | impbii 208 | 1 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ Moore) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2099 Vcvv 3471 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4603 ∪ cuni 4908 ∩ cint 4949 Moorecmoore 36582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-pw 4605 df-sn 4630 df-pr 4632 df-uni 4909 df-int 4950 df-bj-moore 36583 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |