Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-discrmoore Structured version   Visualization version   GIF version

Theorem bj-discrmoore 37106
Description: The powerclass 𝒫 𝐴 is a Moore collection if and only if 𝐴 is a set. It is then called the discrete Moore collection. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-discrmoore (𝐴 ∈ V ↔ 𝒫 𝐴Moore)

Proof of Theorem bj-discrmoore
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unipw 5413 . . . . . 6 𝒫 𝐴 = 𝐴
21ineq1i 4182 . . . . 5 ( 𝒫 𝐴 𝑥) = (𝐴 𝑥)
3 inex1g 5277 . . . . . 6 (𝐴 ∈ V → (𝐴 𝑥) ∈ V)
4 inss1 4203 . . . . . . 7 (𝐴 𝑥) ⊆ 𝐴
54a1i 11 . . . . . 6 (𝐴 ∈ V → (𝐴 𝑥) ⊆ 𝐴)
63, 5elpwd 4572 . . . . 5 (𝐴 ∈ V → (𝐴 𝑥) ∈ 𝒫 𝐴)
72, 6eqeltrid 2833 . . . 4 (𝐴 ∈ V → ( 𝒫 𝐴 𝑥) ∈ 𝒫 𝐴)
87adantr 480 . . 3 ((𝐴 ∈ V ∧ 𝑥 ⊆ 𝒫 𝐴) → ( 𝒫 𝐴 𝑥) ∈ 𝒫 𝐴)
98bj-ismooredr 37104 . 2 (𝐴 ∈ V → 𝒫 𝐴Moore)
10 pwexr 7744 . 2 (𝒫 𝐴Moore𝐴 ∈ V)
119, 10impbii 209 1 (𝐴 ∈ V ↔ 𝒫 𝐴Moore)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3450  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874   cint 4913  Moorecmoore 37098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-pw 4568  df-sn 4593  df-pr 4595  df-uni 4875  df-int 4914  df-bj-moore 37099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator