Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-discrmoore Structured version   Visualization version   GIF version

Theorem bj-discrmoore 37155
Description: The powerclass 𝒫 𝐴 is a Moore collection if and only if 𝐴 is a set. It is then called the discrete Moore collection. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-discrmoore (𝐴 ∈ V ↔ 𝒫 𝐴Moore)

Proof of Theorem bj-discrmoore
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unipw 5389 . . . . . 6 𝒫 𝐴 = 𝐴
21ineq1i 4163 . . . . 5 ( 𝒫 𝐴 𝑥) = (𝐴 𝑥)
3 inex1g 5255 . . . . . 6 (𝐴 ∈ V → (𝐴 𝑥) ∈ V)
4 inss1 4184 . . . . . . 7 (𝐴 𝑥) ⊆ 𝐴
54a1i 11 . . . . . 6 (𝐴 ∈ V → (𝐴 𝑥) ⊆ 𝐴)
63, 5elpwd 4553 . . . . 5 (𝐴 ∈ V → (𝐴 𝑥) ∈ 𝒫 𝐴)
72, 6eqeltrid 2835 . . . 4 (𝐴 ∈ V → ( 𝒫 𝐴 𝑥) ∈ 𝒫 𝐴)
87adantr 480 . . 3 ((𝐴 ∈ V ∧ 𝑥 ⊆ 𝒫 𝐴) → ( 𝒫 𝐴 𝑥) ∈ 𝒫 𝐴)
98bj-ismooredr 37153 . 2 (𝐴 ∈ V → 𝒫 𝐴Moore)
10 pwexr 7698 . 2 (𝒫 𝐴Moore𝐴 ∈ V)
119, 10impbii 209 1 (𝐴 ∈ V ↔ 𝒫 𝐴Moore)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  Vcvv 3436  cin 3896  wss 3897  𝒫 cpw 4547   cuni 4856   cint 4895  Moorecmoore 37147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-pw 4549  df-sn 4574  df-pr 4576  df-uni 4857  df-int 4896  df-bj-moore 37148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator