![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-discrmoore | Structured version Visualization version GIF version |
Description: The powerclass 𝒫 𝐴 is a Moore collection if and only if 𝐴 is a set. It is then called the discrete Moore collection. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-discrmoore | ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ Moore) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw 5450 | . . . . . 6 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
2 | 1 | ineq1i 4208 | . . . . 5 ⊢ (∪ 𝒫 𝐴 ∩ ∩ 𝑥) = (𝐴 ∩ ∩ 𝑥) |
3 | inex1g 5319 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ∈ V) | |
4 | inss1 4228 | . . . . . . 7 ⊢ (𝐴 ∩ ∩ 𝑥) ⊆ 𝐴 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ⊆ 𝐴) |
6 | 3, 5 | elpwd 4608 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
7 | 2, 6 | eqeltrid 2837 | . . . 4 ⊢ (𝐴 ∈ V → (∪ 𝒫 𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑥 ⊆ 𝒫 𝐴) → (∪ 𝒫 𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
9 | 8 | bj-ismooredr 36082 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ Moore) |
10 | pwexr 7754 | . 2 ⊢ (𝒫 𝐴 ∈ Moore → 𝐴 ∈ V) | |
11 | 9, 10 | impbii 208 | 1 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ Moore) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3474 ∩ cin 3947 ⊆ wss 3948 𝒫 cpw 4602 ∪ cuni 4908 ∩ cint 4950 Moorecmoore 36076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-pw 4604 df-sn 4629 df-pr 4631 df-uni 4909 df-int 4951 df-bj-moore 36077 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |