Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoored0 Structured version   Visualization version   GIF version

Theorem bj-ismoored0 37157
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-ismoored0 (𝐴Moore 𝐴𝐴)

Proof of Theorem bj-ismoored0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bj-ismoore 37156 . 2 (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
2 0elpw 5296 . . 3 ∅ ∈ 𝒫 𝐴
3 rint0 4938 . . . . 5 (𝑥 = ∅ → ( 𝐴 𝑥) = 𝐴)
43eleq1d 2816 . . . 4 (𝑥 = ∅ → (( 𝐴 𝑥) ∈ 𝐴 𝐴𝐴))
54rspcv 3568 . . 3 (∅ ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴 𝐴𝐴))
62, 5ax-mp 5 . 2 (∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴 𝐴𝐴)
71, 6sylbi 217 1 (𝐴Moore 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  cin 3896  c0 4282  𝒫 cpw 4549   cuni 4858   cint 4897  Moorecmoore 37154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-ss 3914  df-nul 4283  df-pw 4551  df-uni 4859  df-int 4898  df-bj-moore 37155
This theorem is referenced by:  bj-0nmoore  37163
  Copyright terms: Public domain W3C validator