![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoored0 | Structured version Visualization version GIF version |
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismoored0 | ⊢ (𝐴 ∈ Moore → ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ismoore 36578 | . 2 ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | |
2 | 0elpw 5350 | . . 3 ⊢ ∅ ∈ 𝒫 𝐴 | |
3 | rint0 4988 | . . . . 5 ⊢ (𝑥 = ∅ → (∪ 𝐴 ∩ ∩ 𝑥) = ∪ 𝐴) | |
4 | 3 | eleq1d 2814 | . . . 4 ⊢ (𝑥 = ∅ → ((∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 ↔ ∪ 𝐴 ∈ 𝐴)) |
5 | 4 | rspcv 3604 | . . 3 ⊢ (∅ ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 → ∪ 𝐴 ∈ 𝐴)) |
6 | 2, 5 | ax-mp 5 | . 2 ⊢ (∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 → ∪ 𝐴 ∈ 𝐴) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝐴 ∈ Moore → ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∀wral 3057 ∩ cin 3944 ∅c0 4318 𝒫 cpw 4598 ∪ cuni 4903 ∩ cint 4944 Moorecmoore 36576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-in 3952 df-ss 3962 df-nul 4319 df-pw 4600 df-uni 4904 df-int 4945 df-bj-moore 36577 |
This theorem is referenced by: bj-0nmoore 36585 |
Copyright terms: Public domain | W3C validator |