|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoored0 | Structured version Visualization version GIF version | ||
| Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| bj-ismoored0 | ⊢ (𝐴 ∈ Moore → ∪ 𝐴 ∈ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-ismoore 37106 | . 2 ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) | |
| 2 | 0elpw 5356 | . . 3 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 3 | rint0 4988 | . . . . 5 ⊢ (𝑥 = ∅ → (∪ 𝐴 ∩ ∩ 𝑥) = ∪ 𝐴) | |
| 4 | 3 | eleq1d 2826 | . . . 4 ⊢ (𝑥 = ∅ → ((∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 ↔ ∪ 𝐴 ∈ 𝐴)) | 
| 5 | 4 | rspcv 3618 | . . 3 ⊢ (∅ ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 → ∪ 𝐴 ∈ 𝐴)) | 
| 6 | 2, 5 | ax-mp 5 | . 2 ⊢ (∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 → ∪ 𝐴 ∈ 𝐴) | 
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ∈ Moore → ∪ 𝐴 ∈ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∩ cin 3950 ∅c0 4333 𝒫 cpw 4600 ∪ cuni 4907 ∩ cint 4946 Moorecmoore 37104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-in 3958 df-ss 3968 df-nul 4334 df-pw 4602 df-uni 4908 df-int 4947 df-bj-moore 37105 | 
| This theorem is referenced by: bj-0nmoore 37113 | 
| Copyright terms: Public domain | W3C validator |