Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snmoore Structured version   Visualization version   GIF version

Theorem bj-snmoore 34024
Description: A singleton is a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-snmoore (𝐴 ∈ V ↔ {𝐴} ∈ Moore)

Proof of Theorem bj-snmoore
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 snex 5223 . . . 4 {𝐴} ∈ V
21a1i 11 . . 3 (𝐴 ∈ V → {𝐴} ∈ V)
3 unisng 4760 . . . 4 (𝐴 ∈ V → {𝐴} = 𝐴)
4 snidg 4504 . . . 4 (𝐴 ∈ V → 𝐴 ∈ {𝐴})
53, 4eqeltrd 2883 . . 3 (𝐴 ∈ V → {𝐴} ∈ {𝐴})
6 df-ne 2985 . . . . . . . 8 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
7 sssn 4666 . . . . . . . 8 (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
8 biorf 931 . . . . . . . . 9 𝑥 = ∅ → (𝑥 = {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})))
98biimpar 478 . . . . . . . 8 ((¬ 𝑥 = ∅ ∧ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) → 𝑥 = {𝐴})
106, 7, 9syl2anb 597 . . . . . . 7 ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ {𝐴}) → 𝑥 = {𝐴})
11 inteq 4785 . . . . . . . . 9 (𝑥 = {𝐴} → 𝑥 = {𝐴})
12 intsng 4817 . . . . . . . . 9 (𝐴 ∈ V → {𝐴} = 𝐴)
13 eqtr 2816 . . . . . . . . . 10 (( 𝑥 = {𝐴} ∧ {𝐴} = 𝐴) → 𝑥 = 𝐴)
1413ex 413 . . . . . . . . 9 ( 𝑥 = {𝐴} → ( {𝐴} = 𝐴 𝑥 = 𝐴))
1511, 12, 14syl2im 40 . . . . . . . 8 (𝑥 = {𝐴} → (𝐴 ∈ V → 𝑥 = 𝐴))
16 intex 5131 . . . . . . . . . 10 (𝑥 ≠ ∅ ↔ 𝑥 ∈ V)
17 elsng 4486 . . . . . . . . . 10 ( 𝑥 ∈ V → ( 𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴))
1816, 17sylbi 218 . . . . . . . . 9 (𝑥 ≠ ∅ → ( 𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴))
1918biimprd 249 . . . . . . . 8 (𝑥 ≠ ∅ → ( 𝑥 = 𝐴 𝑥 ∈ {𝐴}))
2015, 19sylan9r 509 . . . . . . 7 ((𝑥 ≠ ∅ ∧ 𝑥 = {𝐴}) → (𝐴 ∈ V → 𝑥 ∈ {𝐴}))
2110, 20syldan 591 . . . . . 6 ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ {𝐴}) → (𝐴 ∈ V → 𝑥 ∈ {𝐴}))
2221ex 413 . . . . 5 (𝑥 ≠ ∅ → (𝑥 ⊆ {𝐴} → (𝐴 ∈ V → 𝑥 ∈ {𝐴})))
2322com13 88 . . . 4 (𝐴 ∈ V → (𝑥 ⊆ {𝐴} → (𝑥 ≠ ∅ → 𝑥 ∈ {𝐴})))
2423imp31 418 . . 3 (((𝐴 ∈ V ∧ 𝑥 ⊆ {𝐴}) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ {𝐴})
252, 5, 24bj-ismooredr2 34021 . 2 (𝐴 ∈ V → {𝐴} ∈ Moore)
26 snprc 4560 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
2726biimpi 217 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
28 bj-0nmoore 34023 . . . . 5 ¬ ∅ ∈ Moore
2928a1i 11 . . . 4 𝐴 ∈ V → ¬ ∅ ∈ Moore)
3027, 29eqneltrd 2902 . . 3 𝐴 ∈ V → ¬ {𝐴} ∈ Moore)
3130con4i 114 . 2 ({𝐴} ∈ Moore𝐴 ∈ V)
3225, 31impbii 210 1 (𝐴 ∈ V ↔ {𝐴} ∈ Moore)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wo 842   = wceq 1522  wcel 2081  wne 2984  Vcvv 3437  wss 3859  c0 4211  {csn 4472   cuni 4745   cint 4782  Moorecmoore 34013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-pw 4455  df-sn 4473  df-pr 4475  df-uni 4746  df-int 4783  df-bj-moore 34014
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator