Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snmoore Structured version   Visualization version   GIF version

Theorem bj-snmoore 37079
Description: A singleton is a Moore collection. See bj-snmooreb 37080 for a biconditional version. (Contributed by BJ, 10-Apr-2024.)
Assertion
Ref Expression
bj-snmoore (𝐴𝑉 → {𝐴} ∈ Moore)

Proof of Theorem bj-snmoore
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unisng 4949 . . 3 (𝐴𝑉 {𝐴} = 𝐴)
2 snidg 4682 . . 3 (𝐴𝑉𝐴 ∈ {𝐴})
31, 2eqeltrd 2844 . 2 (𝐴𝑉 {𝐴} ∈ {𝐴})
4 df-ne 2947 . . . . . 6 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
5 sssn 4851 . . . . . 6 (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
6 biorf 935 . . . . . . 7 𝑥 = ∅ → (𝑥 = {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})))
76biimpar 477 . . . . . 6 ((¬ 𝑥 = ∅ ∧ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) → 𝑥 = {𝐴})
84, 5, 7syl2anb 597 . . . . 5 ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ {𝐴}) → 𝑥 = {𝐴})
9 inteq 4973 . . . . . . 7 (𝑥 = {𝐴} → 𝑥 = {𝐴})
10 intsng 5007 . . . . . . 7 (𝐴𝑉 {𝐴} = 𝐴)
11 eqtr 2763 . . . . . . . 8 (( 𝑥 = {𝐴} ∧ {𝐴} = 𝐴) → 𝑥 = 𝐴)
1211ex 412 . . . . . . 7 ( 𝑥 = {𝐴} → ( {𝐴} = 𝐴 𝑥 = 𝐴))
139, 10, 12syl2im 40 . . . . . 6 (𝑥 = {𝐴} → (𝐴𝑉 𝑥 = 𝐴))
14 intex 5362 . . . . . . . 8 (𝑥 ≠ ∅ ↔ 𝑥 ∈ V)
15 elsng 4662 . . . . . . . 8 ( 𝑥 ∈ V → ( 𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴))
1614, 15sylbi 217 . . . . . . 7 (𝑥 ≠ ∅ → ( 𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴))
1716biimprd 248 . . . . . 6 (𝑥 ≠ ∅ → ( 𝑥 = 𝐴 𝑥 ∈ {𝐴}))
1813, 17sylan9r 508 . . . . 5 ((𝑥 ≠ ∅ ∧ 𝑥 = {𝐴}) → (𝐴𝑉 𝑥 ∈ {𝐴}))
198, 18syldan 590 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ {𝐴}) → (𝐴𝑉 𝑥 ∈ {𝐴}))
2019ancoms 458 . . 3 ((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → (𝐴𝑉 𝑥 ∈ {𝐴}))
2120impcom 407 . 2 ((𝐴𝑉 ∧ (𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ {𝐴})
223, 21bj-ismooredr2 37076 1 (𝐴𝑉 → {𝐴} ∈ Moore)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  wss 3976  c0 4352  {csn 4648   cuni 4931   cint 4970  Moorecmoore 37069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649  df-pr 4651  df-uni 4932  df-int 4971  df-bj-moore 37070
This theorem is referenced by:  bj-snmooreb  37080  bj-prmoore  37081
  Copyright terms: Public domain W3C validator