Step | Hyp | Ref
| Expression |
1 | | snex 5223 |
. . . 4
⊢ {𝐴} ∈ V |
2 | 1 | a1i 11 |
. . 3
⊢ (𝐴 ∈ V → {𝐴} ∈ V) |
3 | | unisng 4760 |
. . . 4
⊢ (𝐴 ∈ V → ∪ {𝐴}
= 𝐴) |
4 | | snidg 4504 |
. . . 4
⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴}) |
5 | 3, 4 | eqeltrd 2883 |
. . 3
⊢ (𝐴 ∈ V → ∪ {𝐴}
∈ {𝐴}) |
6 | | df-ne 2985 |
. . . . . . . 8
⊢ (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅) |
7 | | sssn 4666 |
. . . . . . . 8
⊢ (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) |
8 | | biorf 931 |
. . . . . . . . 9
⊢ (¬
𝑥 = ∅ → (𝑥 = {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))) |
9 | 8 | biimpar 478 |
. . . . . . . 8
⊢ ((¬
𝑥 = ∅ ∧ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) → 𝑥 = {𝐴}) |
10 | 6, 7, 9 | syl2anb 597 |
. . . . . . 7
⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ {𝐴}) → 𝑥 = {𝐴}) |
11 | | inteq 4785 |
. . . . . . . . 9
⊢ (𝑥 = {𝐴} → ∩ 𝑥 = ∩
{𝐴}) |
12 | | intsng 4817 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → ∩ {𝐴}
= 𝐴) |
13 | | eqtr 2816 |
. . . . . . . . . 10
⊢ ((∩ 𝑥 =
∩ {𝐴} ∧ ∩ {𝐴} = 𝐴) → ∩ 𝑥 = 𝐴) |
14 | 13 | ex 413 |
. . . . . . . . 9
⊢ (∩ 𝑥 =
∩ {𝐴} → (∩
{𝐴} = 𝐴 → ∩ 𝑥 = 𝐴)) |
15 | 11, 12, 14 | syl2im 40 |
. . . . . . . 8
⊢ (𝑥 = {𝐴} → (𝐴 ∈ V → ∩ 𝑥 =
𝐴)) |
16 | | intex 5131 |
. . . . . . . . . 10
⊢ (𝑥 ≠ ∅ ↔ ∩ 𝑥
∈ V) |
17 | | elsng 4486 |
. . . . . . . . . 10
⊢ (∩ 𝑥
∈ V → (∩ 𝑥 ∈ {𝐴} ↔ ∩ 𝑥 = 𝐴)) |
18 | 16, 17 | sylbi 218 |
. . . . . . . . 9
⊢ (𝑥 ≠ ∅ → (∩ 𝑥
∈ {𝐴} ↔ ∩ 𝑥 =
𝐴)) |
19 | 18 | biimprd 249 |
. . . . . . . 8
⊢ (𝑥 ≠ ∅ → (∩ 𝑥 =
𝐴 → ∩ 𝑥
∈ {𝐴})) |
20 | 15, 19 | sylan9r 509 |
. . . . . . 7
⊢ ((𝑥 ≠ ∅ ∧ 𝑥 = {𝐴}) → (𝐴 ∈ V → ∩ 𝑥
∈ {𝐴})) |
21 | 10, 20 | syldan 591 |
. . . . . 6
⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ {𝐴}) → (𝐴 ∈ V → ∩ 𝑥
∈ {𝐴})) |
22 | 21 | ex 413 |
. . . . 5
⊢ (𝑥 ≠ ∅ → (𝑥 ⊆ {𝐴} → (𝐴 ∈ V → ∩ 𝑥
∈ {𝐴}))) |
23 | 22 | com13 88 |
. . . 4
⊢ (𝐴 ∈ V → (𝑥 ⊆ {𝐴} → (𝑥 ≠ ∅ → ∩ 𝑥
∈ {𝐴}))) |
24 | 23 | imp31 418 |
. . 3
⊢ (((𝐴 ∈ V ∧ 𝑥 ⊆ {𝐴}) ∧ 𝑥 ≠ ∅) → ∩ 𝑥
∈ {𝐴}) |
25 | 2, 5, 24 | bj-ismooredr2 34021 |
. 2
⊢ (𝐴 ∈ V → {𝐴} ∈
Moore) |
26 | | snprc 4560 |
. . . . 5
⊢ (¬
𝐴 ∈ V ↔ {𝐴} = ∅) |
27 | 26 | biimpi 217 |
. . . 4
⊢ (¬
𝐴 ∈ V → {𝐴} = ∅) |
28 | | bj-0nmoore 34023 |
. . . . 5
⊢ ¬
∅ ∈ Moore |
29 | 28 | a1i 11 |
. . . 4
⊢ (¬
𝐴 ∈ V → ¬
∅ ∈ Moore) |
30 | 27, 29 | eqneltrd 2902 |
. . 3
⊢ (¬
𝐴 ∈ V → ¬
{𝐴} ∈
Moore) |
31 | 30 | con4i 114 |
. 2
⊢ ({𝐴} ∈ Moore →
𝐴 ∈
V) |
32 | 25, 31 | impbii 210 |
1
⊢ (𝐴 ∈ V ↔ {𝐴} ∈
Moore) |