Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snmoore Structured version   Visualization version   GIF version

Theorem bj-snmoore 35328
Description: A singleton is a Moore collection. See bj-snmooreb 35329 for a biconditional version. (Contributed by BJ, 10-Apr-2024.)
Assertion
Ref Expression
bj-snmoore (𝐴𝑉 → {𝐴} ∈ Moore)

Proof of Theorem bj-snmoore
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unisng 4865 . . 3 (𝐴𝑉 {𝐴} = 𝐴)
2 snidg 4599 . . 3 (𝐴𝑉𝐴 ∈ {𝐴})
31, 2eqeltrd 2837 . 2 (𝐴𝑉 {𝐴} ∈ {𝐴})
4 df-ne 2942 . . . . . 6 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
5 sssn 4765 . . . . . 6 (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
6 biorf 935 . . . . . . 7 𝑥 = ∅ → (𝑥 = {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})))
76biimpar 479 . . . . . 6 ((¬ 𝑥 = ∅ ∧ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) → 𝑥 = {𝐴})
84, 5, 7syl2anb 599 . . . . 5 ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ {𝐴}) → 𝑥 = {𝐴})
9 inteq 4889 . . . . . . 7 (𝑥 = {𝐴} → 𝑥 = {𝐴})
10 intsng 4923 . . . . . . 7 (𝐴𝑉 {𝐴} = 𝐴)
11 eqtr 2759 . . . . . . . 8 (( 𝑥 = {𝐴} ∧ {𝐴} = 𝐴) → 𝑥 = 𝐴)
1211ex 414 . . . . . . 7 ( 𝑥 = {𝐴} → ( {𝐴} = 𝐴 𝑥 = 𝐴))
139, 10, 12syl2im 40 . . . . . 6 (𝑥 = {𝐴} → (𝐴𝑉 𝑥 = 𝐴))
14 intex 5270 . . . . . . . 8 (𝑥 ≠ ∅ ↔ 𝑥 ∈ V)
15 elsng 4579 . . . . . . . 8 ( 𝑥 ∈ V → ( 𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴))
1614, 15sylbi 216 . . . . . . 7 (𝑥 ≠ ∅ → ( 𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴))
1716biimprd 248 . . . . . 6 (𝑥 ≠ ∅ → ( 𝑥 = 𝐴 𝑥 ∈ {𝐴}))
1813, 17sylan9r 510 . . . . 5 ((𝑥 ≠ ∅ ∧ 𝑥 = {𝐴}) → (𝐴𝑉 𝑥 ∈ {𝐴}))
198, 18syldan 592 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ {𝐴}) → (𝐴𝑉 𝑥 ∈ {𝐴}))
2019ancoms 460 . . 3 ((𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅) → (𝐴𝑉 𝑥 ∈ {𝐴}))
2120impcom 409 . 2 ((𝐴𝑉 ∧ (𝑥 ⊆ {𝐴} ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ {𝐴})
223, 21bj-ismooredr2 35325 1 (𝐴𝑉 → {𝐴} ∈ Moore)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845   = wceq 1539  wcel 2104  wne 2941  Vcvv 3437  wss 3892  c0 4262  {csn 4565   cuni 4844   cint 4886  Moorecmoore 35318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-pw 4541  df-sn 4566  df-pr 4568  df-uni 4845  df-int 4887  df-bj-moore 35319
This theorem is referenced by:  bj-snmooreb  35329  bj-prmoore  35330
  Copyright terms: Public domain W3C validator