| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq1 5960 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
| 2 | 1 | rneqd 5918 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐴 ↾ 𝐶) = ran (𝐵 ↾ 𝐶)) |
| 3 | df-ima 5667 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 4 | df-ima 5667 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
| 5 | 2, 3, 4 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ran crn 5655 ↾ cres 5656 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: imaeq1i 6044 imaeq1d 6046 suppval 8161 naddcllem 8688 eceq2 8760 marypha1lem 9445 marypha1 9446 ackbij2lem2 10253 ackbij2lem3 10254 r1om 10257 limsupval 15490 isacs1i 17669 mreacs 17670 islindf 21772 iscnp 23175 xkoccn 23557 xkohaus 23591 xkoco1cn 23595 xkoco2cn 23596 xkococnlem 23597 xkococn 23598 xkoinjcn 23625 fmval 23881 fmf 23883 utoptop 24173 restutop 24176 restutopopn 24177 ustuqtoplem 24178 ustuqtop1 24180 ustuqtop2 24181 ustuqtop4 24183 ustuqtop5 24184 utopsnneiplem 24186 utopsnnei 24188 neipcfilu 24234 psmetutop 24506 cfilfval 25216 elply2 26153 coeeu 26182 coelem 26183 coeeq 26184 dmarea 26919 negsval 27983 mclsax 35591 tailfval 36390 bj-cleq 36980 bj-funun 37270 poimirlem15 37659 poimirlem24 37668 brtrclfv2 43751 liminfval 45788 ushggricedg 47940 uhgrimisgrgric 47944 |
| Copyright terms: Public domain | W3C validator |