| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq1 5947 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
| 2 | 1 | rneqd 5905 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐴 ↾ 𝐶) = ran (𝐵 ↾ 𝐶)) |
| 3 | df-ima 5654 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 4 | df-ima 5654 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
| 5 | 2, 3, 4 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ran crn 5642 ↾ cres 5643 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: imaeq1i 6031 imaeq1d 6033 suppval 8144 naddcllem 8643 eceq2 8715 marypha1lem 9391 marypha1 9392 ackbij2lem2 10199 ackbij2lem3 10200 r1om 10203 limsupval 15447 isacs1i 17625 mreacs 17626 islindf 21728 iscnp 23131 xkoccn 23513 xkohaus 23547 xkoco1cn 23551 xkoco2cn 23552 xkococnlem 23553 xkococn 23554 xkoinjcn 23581 fmval 23837 fmf 23839 utoptop 24129 restutop 24132 restutopopn 24133 ustuqtoplem 24134 ustuqtop1 24136 ustuqtop2 24137 ustuqtop4 24139 ustuqtop5 24140 utopsnneiplem 24142 utopsnnei 24144 neipcfilu 24190 psmetutop 24462 cfilfval 25171 elply2 26108 coeeu 26137 coelem 26138 coeeq 26139 dmarea 26874 negsval 27938 mclsax 35563 tailfval 36367 bj-cleq 36957 bj-funun 37247 poimirlem15 37636 poimirlem24 37645 brtrclfv2 43723 liminfval 45764 ushggricedg 47931 uhgrimisgrgric 47935 |
| Copyright terms: Public domain | W3C validator |