Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
imaeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq1 5888 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
2 | 1 | rneqd 5850 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐴 ↾ 𝐶) = ran (𝐵 ↾ 𝐶)) |
3 | df-ima 5603 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
4 | df-ima 5603 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ran crn 5591 ↾ cres 5592 “ cima 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 |
This theorem is referenced by: imaeq1i 5969 imaeq1d 5971 suppval 7988 eceq2 8547 marypha1lem 9201 marypha1 9202 ackbij2lem2 10005 ackbij2lem3 10006 r1om 10009 limsupval 15192 isacs1i 17375 mreacs 17376 islindf 21028 iscnp 22397 xkoccn 22779 xkohaus 22813 xkoco1cn 22817 xkoco2cn 22818 xkococnlem 22819 xkococn 22820 xkoinjcn 22847 fmval 23103 fmf 23105 utoptop 23395 restutop 23398 restutopopn 23399 ustuqtoplem 23400 ustuqtop1 23402 ustuqtop2 23403 ustuqtop4 23405 ustuqtop5 23406 utopsnneiplem 23408 utopsnnei 23410 neipcfilu 23457 psmetutop 23732 cfilfval 24437 elply2 25366 coeeu 25395 coelem 25396 coeeq 25397 dmarea 26116 mclsax 33540 naddcllem 33840 negsval 34132 tailfval 34570 bj-cleq 35161 bj-funun 35432 poimirlem15 35801 poimirlem24 35810 brtrclfv2 41342 liminfval 43307 isomgreqve 45288 isomgrsym 45299 isomgrtr 45302 ushrisomgr 45304 |
Copyright terms: Public domain | W3C validator |