Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
imaeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq1 5874 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
2 | 1 | rneqd 5836 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐴 ↾ 𝐶) = ran (𝐵 ↾ 𝐶)) |
3 | df-ima 5593 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
4 | df-ima 5593 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ran crn 5581 ↾ cres 5582 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: imaeq1i 5955 imaeq1d 5957 suppval 7950 eceq2 8496 marypha1lem 9122 marypha1 9123 ackbij2lem2 9927 ackbij2lem3 9928 r1om 9931 limsupval 15111 isacs1i 17283 mreacs 17284 islindf 20929 iscnp 22296 xkoccn 22678 xkohaus 22712 xkoco1cn 22716 xkoco2cn 22717 xkococnlem 22718 xkococn 22719 xkoinjcn 22746 fmval 23002 fmf 23004 utoptop 23294 restutop 23297 restutopopn 23298 ustuqtoplem 23299 ustuqtop1 23301 ustuqtop2 23302 ustuqtop4 23304 ustuqtop5 23305 utopsnneiplem 23307 utopsnnei 23309 neipcfilu 23356 psmetutop 23629 cfilfval 24333 elply2 25262 coeeu 25291 coelem 25292 coeeq 25293 dmarea 26012 mclsax 33431 naddcllem 33758 negsval 34050 tailfval 34488 bj-cleq 35079 bj-funun 35350 poimirlem15 35719 poimirlem24 35728 brtrclfv2 41224 liminfval 43190 isomgreqve 45165 isomgrsym 45176 isomgrtr 45179 ushrisomgr 45181 |
Copyright terms: Public domain | W3C validator |