![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
imaeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq1 6003 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
2 | 1 | rneqd 5963 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐴 ↾ 𝐶) = ran (𝐵 ↾ 𝐶)) |
3 | df-ima 5713 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
4 | df-ima 5713 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ran crn 5701 ↾ cres 5702 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: imaeq1i 6086 imaeq1d 6088 suppval 8203 naddcllem 8732 eceq2 8804 marypha1lem 9502 marypha1 9503 ackbij2lem2 10308 ackbij2lem3 10309 r1om 10312 limsupval 15520 isacs1i 17715 mreacs 17716 islindf 21855 iscnp 23266 xkoccn 23648 xkohaus 23682 xkoco1cn 23686 xkoco2cn 23687 xkococnlem 23688 xkococn 23689 xkoinjcn 23716 fmval 23972 fmf 23974 utoptop 24264 restutop 24267 restutopopn 24268 ustuqtoplem 24269 ustuqtop1 24271 ustuqtop2 24272 ustuqtop4 24274 ustuqtop5 24275 utopsnneiplem 24277 utopsnnei 24279 neipcfilu 24326 psmetutop 24601 cfilfval 25317 elply2 26255 coeeu 26284 coelem 26285 coeeq 26286 dmarea 27018 negsval 28075 mclsax 35537 tailfval 36338 bj-cleq 36928 bj-funun 37218 poimirlem15 37595 poimirlem24 37604 brtrclfv2 43689 liminfval 45680 ushggricedg 47780 uhgrimisgrgric 47783 |
Copyright terms: Public domain | W3C validator |