| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq1 5917 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
| 2 | 1 | rneqd 5873 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐴 ↾ 𝐶) = ran (𝐵 ↾ 𝐶)) |
| 3 | df-ima 5624 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 4 | df-ima 5624 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
| 5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ran crn 5612 ↾ cres 5613 “ cima 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 |
| This theorem is referenced by: imaeq1i 6001 imaeq1d 6003 suppval 8087 naddcllem 8586 eceq2 8658 marypha1lem 9312 marypha1 9313 ackbij2lem2 10125 ackbij2lem3 10126 r1om 10129 limsupval 15376 isacs1i 17558 mreacs 17559 islindf 21744 iscnp 23147 xkoccn 23529 xkohaus 23563 xkoco1cn 23567 xkoco2cn 23568 xkococnlem 23569 xkococn 23570 xkoinjcn 23597 fmval 23853 fmf 23855 utoptop 24144 restutop 24147 restutopopn 24148 ustuqtoplem 24149 ustuqtop1 24151 ustuqtop2 24152 ustuqtop4 24154 ustuqtop5 24155 utopsnneiplem 24157 utopsnnei 24159 neipcfilu 24205 psmetutop 24477 cfilfval 25186 elply2 26123 coeeu 26152 coelem 26153 coeeq 26154 dmarea 26889 negsval 27962 mclsax 35605 tailfval 36406 bj-cleq 36996 bj-funun 37286 poimirlem15 37675 poimirlem24 37684 brtrclfv2 43760 liminfval 45797 ushggricedg 47958 uhgrimisgrgric 47962 |
| Copyright terms: Public domain | W3C validator |