| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq1 5933 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
| 2 | 1 | rneqd 5891 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐴 ↾ 𝐶) = ran (𝐵 ↾ 𝐶)) |
| 3 | df-ima 5644 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 4 | df-ima 5644 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ran crn 5632 ↾ cres 5633 “ cima 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: imaeq1i 6017 imaeq1d 6019 suppval 8118 naddcllem 8617 eceq2 8689 marypha1lem 9360 marypha1 9361 ackbij2lem2 10168 ackbij2lem3 10169 r1om 10172 limsupval 15416 isacs1i 17594 mreacs 17595 islindf 21697 iscnp 23100 xkoccn 23482 xkohaus 23516 xkoco1cn 23520 xkoco2cn 23521 xkococnlem 23522 xkococn 23523 xkoinjcn 23550 fmval 23806 fmf 23808 utoptop 24098 restutop 24101 restutopopn 24102 ustuqtoplem 24103 ustuqtop1 24105 ustuqtop2 24106 ustuqtop4 24108 ustuqtop5 24109 utopsnneiplem 24111 utopsnnei 24113 neipcfilu 24159 psmetutop 24431 cfilfval 25140 elply2 26077 coeeu 26106 coelem 26107 coeeq 26108 dmarea 26843 negsval 27907 mclsax 35529 tailfval 36333 bj-cleq 36923 bj-funun 37213 poimirlem15 37602 poimirlem24 37611 brtrclfv2 43689 liminfval 45730 ushggricedg 47900 uhgrimisgrgric 47904 |
| Copyright terms: Public domain | W3C validator |