MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeq1 Structured version   Visualization version   GIF version

Theorem imaeq1 5999
Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imaeq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem imaeq1
StepHypRef Expression
1 reseq1 5917 . . 3 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
21rneqd 5873 . 2 (𝐴 = 𝐵 → ran (𝐴𝐶) = ran (𝐵𝐶))
3 df-ima 5624 . 2 (𝐴𝐶) = ran (𝐴𝐶)
4 df-ima 5624 . 2 (𝐵𝐶) = ran (𝐵𝐶)
52, 3, 43eqtr4g 2791 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  ran crn 5612  cres 5613  cima 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624
This theorem is referenced by:  imaeq1i  6001  imaeq1d  6003  suppval  8087  naddcllem  8586  eceq2  8658  marypha1lem  9312  marypha1  9313  ackbij2lem2  10125  ackbij2lem3  10126  r1om  10129  limsupval  15376  isacs1i  17558  mreacs  17559  islindf  21744  iscnp  23147  xkoccn  23529  xkohaus  23563  xkoco1cn  23567  xkoco2cn  23568  xkococnlem  23569  xkococn  23570  xkoinjcn  23597  fmval  23853  fmf  23855  utoptop  24144  restutop  24147  restutopopn  24148  ustuqtoplem  24149  ustuqtop1  24151  ustuqtop2  24152  ustuqtop4  24154  ustuqtop5  24155  utopsnneiplem  24157  utopsnnei  24159  neipcfilu  24205  psmetutop  24477  cfilfval  25186  elply2  26123  coeeu  26152  coelem  26153  coeeq  26154  dmarea  26889  negsval  27962  mclsax  35605  tailfval  36406  bj-cleq  36996  bj-funun  37286  poimirlem15  37675  poimirlem24  37684  brtrclfv2  43760  liminfval  45797  ushggricedg  47958  uhgrimisgrgric  47962
  Copyright terms: Public domain W3C validator