![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
imaeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq1 5994 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
2 | 1 | rneqd 5952 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐴 ↾ 𝐶) = ran (𝐵 ↾ 𝐶)) |
3 | df-ima 5702 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
4 | df-ima 5702 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
5 | 2, 3, 4 | 3eqtr4g 2800 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ran crn 5690 ↾ cres 5691 “ cima 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: imaeq1i 6077 imaeq1d 6079 suppval 8186 naddcllem 8713 eceq2 8785 marypha1lem 9471 marypha1 9472 ackbij2lem2 10277 ackbij2lem3 10278 r1om 10281 limsupval 15507 isacs1i 17702 mreacs 17703 islindf 21850 iscnp 23261 xkoccn 23643 xkohaus 23677 xkoco1cn 23681 xkoco2cn 23682 xkococnlem 23683 xkococn 23684 xkoinjcn 23711 fmval 23967 fmf 23969 utoptop 24259 restutop 24262 restutopopn 24263 ustuqtoplem 24264 ustuqtop1 24266 ustuqtop2 24267 ustuqtop4 24269 ustuqtop5 24270 utopsnneiplem 24272 utopsnnei 24274 neipcfilu 24321 psmetutop 24596 cfilfval 25312 elply2 26250 coeeu 26279 coelem 26280 coeeq 26281 dmarea 27015 negsval 28072 mclsax 35554 tailfval 36355 bj-cleq 36945 bj-funun 37235 poimirlem15 37622 poimirlem24 37631 brtrclfv2 43717 liminfval 45715 ushggricedg 47834 uhgrimisgrgric 47837 |
Copyright terms: Public domain | W3C validator |