| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq1 5944 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
| 2 | 1 | rneqd 5902 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐴 ↾ 𝐶) = ran (𝐵 ↾ 𝐶)) |
| 3 | df-ima 5651 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 4 | df-ima 5651 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ran crn 5639 ↾ cres 5640 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: imaeq1i 6028 imaeq1d 6030 suppval 8141 naddcllem 8640 eceq2 8712 marypha1lem 9384 marypha1 9385 ackbij2lem2 10192 ackbij2lem3 10193 r1om 10196 limsupval 15440 isacs1i 17618 mreacs 17619 islindf 21721 iscnp 23124 xkoccn 23506 xkohaus 23540 xkoco1cn 23544 xkoco2cn 23545 xkococnlem 23546 xkococn 23547 xkoinjcn 23574 fmval 23830 fmf 23832 utoptop 24122 restutop 24125 restutopopn 24126 ustuqtoplem 24127 ustuqtop1 24129 ustuqtop2 24130 ustuqtop4 24132 ustuqtop5 24133 utopsnneiplem 24135 utopsnnei 24137 neipcfilu 24183 psmetutop 24455 cfilfval 25164 elply2 26101 coeeu 26130 coelem 26131 coeeq 26132 dmarea 26867 negsval 27931 mclsax 35556 tailfval 36360 bj-cleq 36950 bj-funun 37240 poimirlem15 37629 poimirlem24 37638 brtrclfv2 43716 liminfval 45757 ushggricedg 47927 uhgrimisgrgric 47931 |
| Copyright terms: Public domain | W3C validator |