| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq1 5924 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) | |
| 2 | 1 | rneqd 5880 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐴 ↾ 𝐶) = ran (𝐵 ↾ 𝐶)) |
| 3 | df-ima 5632 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
| 4 | df-ima 5632 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ran crn 5620 ↾ cres 5621 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: imaeq1i 6008 imaeq1d 6010 suppval 8095 naddcllem 8594 eceq2 8666 marypha1lem 9323 marypha1 9324 ackbij2lem2 10133 ackbij2lem3 10134 r1om 10137 limsupval 15381 isacs1i 17563 mreacs 17564 islindf 21719 iscnp 23122 xkoccn 23504 xkohaus 23538 xkoco1cn 23542 xkoco2cn 23543 xkococnlem 23544 xkococn 23545 xkoinjcn 23572 fmval 23828 fmf 23830 utoptop 24120 restutop 24123 restutopopn 24124 ustuqtoplem 24125 ustuqtop1 24127 ustuqtop2 24128 ustuqtop4 24130 ustuqtop5 24131 utopsnneiplem 24133 utopsnnei 24135 neipcfilu 24181 psmetutop 24453 cfilfval 25162 elply2 26099 coeeu 26128 coelem 26129 coeeq 26130 dmarea 26865 negsval 27936 mclsax 35542 tailfval 36346 bj-cleq 36936 bj-funun 37226 poimirlem15 37615 poimirlem24 37624 brtrclfv2 43700 liminfval 45740 ushggricedg 47911 uhgrimisgrgric 47915 |
| Copyright terms: Public domain | W3C validator |