MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeq1 Structured version   Visualization version   GIF version

Theorem imaeq1 6042
Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imaeq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem imaeq1
StepHypRef Expression
1 reseq1 5960 . . 3 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
21rneqd 5918 . 2 (𝐴 = 𝐵 → ran (𝐴𝐶) = ran (𝐵𝐶))
3 df-ima 5667 . 2 (𝐴𝐶) = ran (𝐴𝐶)
4 df-ima 5667 . 2 (𝐵𝐶) = ran (𝐵𝐶)
52, 3, 43eqtr4g 2795 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ran crn 5655  cres 5656  cima 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667
This theorem is referenced by:  imaeq1i  6044  imaeq1d  6046  suppval  8161  naddcllem  8688  eceq2  8760  marypha1lem  9445  marypha1  9446  ackbij2lem2  10253  ackbij2lem3  10254  r1om  10257  limsupval  15490  isacs1i  17669  mreacs  17670  islindf  21772  iscnp  23175  xkoccn  23557  xkohaus  23591  xkoco1cn  23595  xkoco2cn  23596  xkococnlem  23597  xkococn  23598  xkoinjcn  23625  fmval  23881  fmf  23883  utoptop  24173  restutop  24176  restutopopn  24177  ustuqtoplem  24178  ustuqtop1  24180  ustuqtop2  24181  ustuqtop4  24183  ustuqtop5  24184  utopsnneiplem  24186  utopsnnei  24188  neipcfilu  24234  psmetutop  24506  cfilfval  25216  elply2  26153  coeeu  26182  coelem  26183  coeeq  26184  dmarea  26919  negsval  27983  mclsax  35591  tailfval  36390  bj-cleq  36980  bj-funun  37270  poimirlem15  37659  poimirlem24  37668  brtrclfv2  43751  liminfval  45788  ushggricedg  47940  uhgrimisgrgric  47944
  Copyright terms: Public domain W3C validator