![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpnzexb | Structured version Visualization version GIF version |
Description: If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019.) |
Ref | Expression |
---|---|
bj-xpnzexb | ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-xpexg2 35836 | . 2 ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V → (𝐴 × 𝐵) ∈ V)) | |
2 | eldifsni 4793 | . . 3 ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → 𝐴 ≠ ∅) | |
3 | bj-xpnzex 35835 | . . 3 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ V → 𝐵 ∈ V)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → ((𝐴 × 𝐵) ∈ V → 𝐵 ∈ V)) |
5 | 1, 4 | impbid 211 | 1 ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∖ cdif 3945 ∅c0 4322 {csn 4628 × cxp 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |