![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpnzexb | Structured version Visualization version GIF version |
Description: If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019.) |
Ref | Expression |
---|---|
bj-xpnzexb | ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-xpexg2 36348 | . 2 ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V → (𝐴 × 𝐵) ∈ V)) | |
2 | eldifsni 4788 | . . 3 ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → 𝐴 ≠ ∅) | |
3 | bj-xpnzex 36347 | . . 3 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ V → 𝐵 ∈ V)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → ((𝐴 × 𝐵) ∈ V → 𝐵 ∈ V)) |
5 | 1, 4 | impbid 211 | 1 ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 ≠ wne 2934 Vcvv 3468 ∖ cdif 3940 ∅c0 4317 {csn 4623 × cxp 5667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-dm 5679 df-rn 5680 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |