Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpnzexb Structured version   Visualization version   GIF version

Theorem bj-xpnzexb 35837
Description: If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019.)
Assertion
Ref Expression
bj-xpnzexb (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V))

Proof of Theorem bj-xpnzexb
StepHypRef Expression
1 bj-xpexg2 35836 . 2 (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V → (𝐴 × 𝐵) ∈ V))
2 eldifsni 4793 . . 3 (𝐴 ∈ (𝑉 ∖ {∅}) → 𝐴 ≠ ∅)
3 bj-xpnzex 35835 . . 3 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ V → 𝐵 ∈ V))
42, 3syl 17 . 2 (𝐴 ∈ (𝑉 ∖ {∅}) → ((𝐴 × 𝐵) ∈ V → 𝐵 ∈ V))
51, 4impbid 211 1 (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  wne 2940  Vcvv 3474  cdif 3945  c0 4322  {csn 4628   × cxp 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator