| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpnzexb | Structured version Visualization version GIF version | ||
| Description: If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-xpnzexb | ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-xpexg2 36948 | . 2 ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V → (𝐴 × 𝐵) ∈ V)) | |
| 2 | eldifsni 4754 | . . 3 ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → 𝐴 ≠ ∅) | |
| 3 | bj-xpnzex 36947 | . . 3 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ V → 𝐵 ∈ V)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → ((𝐴 × 𝐵) ∈ V → 𝐵 ∈ V)) |
| 5 | 1, 4 | impbid 212 | 1 ⊢ (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∖ cdif 3911 ∅c0 4296 {csn 4589 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |