Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpnzexb Structured version   Visualization version   GIF version

Theorem bj-xpnzexb 35053
Description: If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019.)
Assertion
Ref Expression
bj-xpnzexb (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V))

Proof of Theorem bj-xpnzexb
StepHypRef Expression
1 bj-xpexg2 35052 . 2 (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V → (𝐴 × 𝐵) ∈ V))
2 eldifsni 4720 . . 3 (𝐴 ∈ (𝑉 ∖ {∅}) → 𝐴 ≠ ∅)
3 bj-xpnzex 35051 . . 3 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ V → 𝐵 ∈ V))
42, 3syl 17 . 2 (𝐴 ∈ (𝑉 ∖ {∅}) → ((𝐴 × 𝐵) ∈ V → 𝐵 ∈ V))
51, 4impbid 215 1 (𝐴 ∈ (𝑉 ∖ {∅}) → (𝐵 ∈ V ↔ (𝐴 × 𝐵) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2112  wne 2943  Vcvv 3423  cdif 3881  c0 4254  {csn 4558   × cxp 5577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5585  df-rel 5586  df-cnv 5587  df-dm 5589  df-rn 5590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator