MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssini Structured version   Visualization version   GIF version

Theorem ssini 4206
Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.)
Hypotheses
Ref Expression
ssini.1 𝐴𝐵
ssini.2 𝐴𝐶
Assertion
Ref Expression
ssini 𝐴 ⊆ (𝐵𝐶)

Proof of Theorem ssini
StepHypRef Expression
1 ssini.1 . . 3 𝐴𝐵
2 ssini.2 . . 3 𝐴𝐶
31, 2pm3.2i 470 . 2 (𝐴𝐵𝐴𝐶)
4 ssin 4205 . 2 ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))
53, 4mpbi 230 1 𝐴 ⊆ (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395  cin 3916  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-in 3924  df-ss 3934
This theorem is referenced by:  inv1  4364  cnvrescnv  6171  hartogslem1  9502  xptrrel  14953  fbasrn  23778  limciun  25802  hlimcaui  31172  chdmm1i  31413  chm0i  31426  ledii  31472  lejdii  31474  mayetes3i  31665  mdslj2i  32256  mdslmd2i  32266  sumdmdlem2  32355  sigapildsys  34159  ssoninhaus  36443  bj-disj2r  37023  bj-idres  37155  bj-rvecsscvec  37299  icomnfinre  45557  fouriersw  46236  sge0split  46414
  Copyright terms: Public domain W3C validator