MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssini Structured version   Visualization version   GIF version

Theorem ssini 4162
Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.)
Hypotheses
Ref Expression
ssini.1 𝐴𝐵
ssini.2 𝐴𝐶
Assertion
Ref Expression
ssini 𝐴 ⊆ (𝐵𝐶)

Proof of Theorem ssini
StepHypRef Expression
1 ssini.1 . . 3 𝐴𝐵
2 ssini.2 . . 3 𝐴𝐶
31, 2pm3.2i 470 . 2 (𝐴𝐵𝐴𝐶)
4 ssin 4161 . 2 ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))
53, 4mpbi 229 1 𝐴 ⊆ (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395  cin 3882  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  inv1  4325  cnvrescnv  6087  hartogslem1  9231  xptrrel  14619  fbasrn  22943  limciun  24963  hlimcaui  29499  chdmm1i  29740  chm0i  29753  ledii  29799  lejdii  29801  mayetes3i  29992  mdslj2i  30583  mdslmd2i  30593  sumdmdlem2  30682  sigapildsys  32030  ssoninhaus  34564  bj-disj2r  35145  bj-idres  35258  bj-rvecsscvec  35402  icomnfinre  42980  fouriersw  43662  sge0split  43837
  Copyright terms: Public domain W3C validator