| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssini | Structured version Visualization version GIF version | ||
| Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.) |
| Ref | Expression |
|---|---|
| ssini.1 | ⊢ 𝐴 ⊆ 𝐵 |
| ssini.2 | ⊢ 𝐴 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| ssini | ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssini.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssini.2 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) |
| 4 | ssin 4205 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∩ cin 3916 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-ss 3934 |
| This theorem is referenced by: inv1 4364 cnvrescnv 6171 hartogslem1 9502 xptrrel 14953 fbasrn 23778 limciun 25802 hlimcaui 31172 chdmm1i 31413 chm0i 31426 ledii 31472 lejdii 31474 mayetes3i 31665 mdslj2i 32256 mdslmd2i 32266 sumdmdlem2 32355 sigapildsys 34159 ssoninhaus 36443 bj-disj2r 37023 bj-idres 37155 bj-rvecsscvec 37299 icomnfinre 45557 fouriersw 46236 sge0split 46414 |
| Copyright terms: Public domain | W3C validator |