Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssini | Structured version Visualization version GIF version |
Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.) |
Ref | Expression |
---|---|
ssini.1 | ⊢ 𝐴 ⊆ 𝐵 |
ssini.2 | ⊢ 𝐴 ⊆ 𝐶 |
Ref | Expression |
---|---|
ssini | ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssini.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssini.2 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
3 | 1, 2 | pm3.2i 471 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) |
4 | ssin 4164 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
5 | 3, 4 | mpbi 229 | 1 ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∩ cin 3886 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: inv1 4328 cnvrescnv 6098 hartogslem1 9301 xptrrel 14691 fbasrn 23035 limciun 25058 hlimcaui 29598 chdmm1i 29839 chm0i 29852 ledii 29898 lejdii 29900 mayetes3i 30091 mdslj2i 30682 mdslmd2i 30692 sumdmdlem2 30781 sigapildsys 32130 ssoninhaus 34637 bj-disj2r 35218 bj-idres 35331 bj-rvecsscvec 35475 icomnfinre 43090 fouriersw 43772 sge0split 43947 |
Copyright terms: Public domain | W3C validator |