MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssini Structured version   Visualization version   GIF version

Theorem ssini 4203
Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.)
Hypotheses
Ref Expression
ssini.1 𝐴𝐵
ssini.2 𝐴𝐶
Assertion
Ref Expression
ssini 𝐴 ⊆ (𝐵𝐶)

Proof of Theorem ssini
StepHypRef Expression
1 ssini.1 . . 3 𝐴𝐵
2 ssini.2 . . 3 𝐴𝐶
31, 2pm3.2i 470 . 2 (𝐴𝐵𝐴𝐶)
4 ssin 4202 . 2 ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))
53, 4mpbi 230 1 𝐴 ⊆ (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395  cin 3913  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-in 3921  df-ss 3931
This theorem is referenced by:  inv1  4361  cnvrescnv  6168  hartogslem1  9495  xptrrel  14946  fbasrn  23771  limciun  25795  hlimcaui  31165  chdmm1i  31406  chm0i  31419  ledii  31465  lejdii  31467  mayetes3i  31658  mdslj2i  32249  mdslmd2i  32259  sumdmdlem2  32348  sigapildsys  34152  ssoninhaus  36436  bj-disj2r  37016  bj-idres  37148  bj-rvecsscvec  37292  icomnfinre  45550  fouriersw  46229  sge0split  46407
  Copyright terms: Public domain W3C validator