MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssini Structured version   Visualization version   GIF version

Theorem ssini 4205
Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.)
Hypotheses
Ref Expression
ssini.1 𝐴𝐵
ssini.2 𝐴𝐶
Assertion
Ref Expression
ssini 𝐴 ⊆ (𝐵𝐶)

Proof of Theorem ssini
StepHypRef Expression
1 ssini.1 . . 3 𝐴𝐵
2 ssini.2 . . 3 𝐴𝐶
31, 2pm3.2i 470 . 2 (𝐴𝐵𝐴𝐶)
4 ssin 4204 . 2 ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))
53, 4mpbi 230 1 𝐴 ⊆ (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395  cin 3915  wss 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-in 3923  df-ss 3933
This theorem is referenced by:  inv1  4363  cnvrescnv  6170  hartogslem1  9501  xptrrel  14952  fbasrn  23777  limciun  25801  hlimcaui  31171  chdmm1i  31412  chm0i  31425  ledii  31471  lejdii  31473  mayetes3i  31664  mdslj2i  32255  mdslmd2i  32265  sumdmdlem2  32354  sigapildsys  34158  ssoninhaus  36431  bj-disj2r  37011  bj-idres  37143  bj-rvecsscvec  37287  icomnfinre  45543  fouriersw  46222  sge0split  46400
  Copyright terms: Public domain W3C validator