MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssini Structured version   Visualization version   GIF version

Theorem ssini 4232
Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.)
Hypotheses
Ref Expression
ssini.1 𝐴𝐵
ssini.2 𝐴𝐶
Assertion
Ref Expression
ssini 𝐴 ⊆ (𝐵𝐶)

Proof of Theorem ssini
StepHypRef Expression
1 ssini.1 . . 3 𝐴𝐵
2 ssini.2 . . 3 𝐴𝐶
31, 2pm3.2i 469 . 2 (𝐴𝐵𝐴𝐶)
4 ssin 4231 . 2 ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))
53, 4mpbi 229 1 𝐴 ⊆ (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 394  cin 3948  wss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-in 3956  df-ss 3966
This theorem is referenced by:  inv1  4395  cnvrescnv  6195  hartogslem1  9541  xptrrel  14933  fbasrn  23610  limciun  25645  hlimcaui  30754  chdmm1i  30995  chm0i  31008  ledii  31054  lejdii  31056  mayetes3i  31247  mdslj2i  31838  mdslmd2i  31848  sumdmdlem2  31937  sigapildsys  33456  ssoninhaus  35638  bj-disj2r  36214  bj-idres  36346  bj-rvecsscvec  36490  icomnfinre  44565  fouriersw  45247  sge0split  45425
  Copyright terms: Public domain W3C validator