MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssini Structured version   Visualization version   GIF version

Theorem ssini 4189
Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.)
Hypotheses
Ref Expression
ssini.1 𝐴𝐵
ssini.2 𝐴𝐶
Assertion
Ref Expression
ssini 𝐴 ⊆ (𝐵𝐶)

Proof of Theorem ssini
StepHypRef Expression
1 ssini.1 . . 3 𝐴𝐵
2 ssini.2 . . 3 𝐴𝐶
31, 2pm3.2i 470 . 2 (𝐴𝐵𝐴𝐶)
4 ssin 4188 . 2 ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))
53, 4mpbi 230 1 𝐴 ⊆ (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395  cin 3897  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-in 3905  df-ss 3915
This theorem is referenced by:  inv1  4347  cnvrescnv  6147  hartogslem1  9435  xptrrel  14889  fbasrn  23800  limciun  25823  hlimcaui  31218  chdmm1i  31459  chm0i  31472  ledii  31518  lejdii  31520  mayetes3i  31711  mdslj2i  32302  mdslmd2i  32312  sumdmdlem2  32401  sigapildsys  34196  ssoninhaus  36513  bj-disj2r  37093  bj-idres  37225  bj-rvecsscvec  37369  icomnfinre  45676  fouriersw  46353  sge0split  46531  nthrucw  47008
  Copyright terms: Public domain W3C validator