| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssini | Structured version Visualization version GIF version | ||
| Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.) |
| Ref | Expression |
|---|---|
| ssini.1 | ⊢ 𝐴 ⊆ 𝐵 |
| ssini.2 | ⊢ 𝐴 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| ssini | ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssini.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssini.2 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) |
| 4 | ssin 4188 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∩ cin 3897 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ss 3915 |
| This theorem is referenced by: inv1 4347 cnvrescnv 6147 hartogslem1 9435 xptrrel 14889 fbasrn 23800 limciun 25823 hlimcaui 31218 chdmm1i 31459 chm0i 31472 ledii 31518 lejdii 31520 mayetes3i 31711 mdslj2i 32302 mdslmd2i 32312 sumdmdlem2 32401 sigapildsys 34196 ssoninhaus 36513 bj-disj2r 37093 bj-idres 37225 bj-rvecsscvec 37369 icomnfinre 45676 fouriersw 46353 sge0split 46531 nthrucw 47008 |
| Copyright terms: Public domain | W3C validator |