| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssini | Structured version Visualization version GIF version | ||
| Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.) |
| Ref | Expression |
|---|---|
| ssini.1 | ⊢ 𝐴 ⊆ 𝐵 |
| ssini.2 | ⊢ 𝐴 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| ssini | ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssini.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssini.2 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) |
| 4 | ssin 4219 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∩ cin 3930 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-in 3938 df-ss 3948 |
| This theorem is referenced by: inv1 4378 cnvrescnv 6195 hartogslem1 9564 xptrrel 15001 fbasrn 23838 limciun 25865 hlimcaui 31183 chdmm1i 31424 chm0i 31437 ledii 31483 lejdii 31485 mayetes3i 31676 mdslj2i 32267 mdslmd2i 32277 sumdmdlem2 32366 sigapildsys 34122 ssoninhaus 36408 bj-disj2r 36988 bj-idres 37120 bj-rvecsscvec 37264 icomnfinre 45522 fouriersw 46203 sge0split 46381 |
| Copyright terms: Public domain | W3C validator |