| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssini | Structured version Visualization version GIF version | ||
| Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.) |
| Ref | Expression |
|---|---|
| ssini.1 | ⊢ 𝐴 ⊆ 𝐵 |
| ssini.2 | ⊢ 𝐴 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| ssini | ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssini.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssini.2 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) |
| 4 | ssin 4192 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∩ cin 3904 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-in 3912 df-ss 3922 |
| This theorem is referenced by: inv1 4351 cnvrescnv 6148 hartogslem1 9453 xptrrel 14905 fbasrn 23787 limciun 25811 hlimcaui 31198 chdmm1i 31439 chm0i 31452 ledii 31498 lejdii 31500 mayetes3i 31691 mdslj2i 32282 mdslmd2i 32292 sumdmdlem2 32381 sigapildsys 34128 ssoninhaus 36421 bj-disj2r 37001 bj-idres 37133 bj-rvecsscvec 37277 icomnfinre 45534 fouriersw 46213 sge0split 46391 |
| Copyright terms: Public domain | W3C validator |