![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssini | Structured version Visualization version GIF version |
Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.) |
Ref | Expression |
---|---|
ssini.1 | ⊢ 𝐴 ⊆ 𝐵 |
ssini.2 | ⊢ 𝐴 ⊆ 𝐶 |
Ref | Expression |
---|---|
ssini | ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssini.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssini.2 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) |
4 | ssin 4250 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
5 | 3, 4 | mpbi 230 | 1 ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∩ cin 3965 ⊆ wss 3966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 df-in 3973 df-ss 3983 |
This theorem is referenced by: inv1 4407 cnvrescnv 6223 hartogslem1 9589 xptrrel 15025 fbasrn 23917 limciun 25955 hlimcaui 31281 chdmm1i 31522 chm0i 31535 ledii 31581 lejdii 31583 mayetes3i 31774 mdslj2i 32365 mdslmd2i 32375 sumdmdlem2 32464 sigapildsys 34157 ssoninhaus 36443 bj-disj2r 37023 bj-idres 37155 bj-rvecsscvec 37299 icomnfinre 45534 fouriersw 46215 sge0split 46393 |
Copyright terms: Public domain | W3C validator |