| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssini | Structured version Visualization version GIF version | ||
| Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.) |
| Ref | Expression |
|---|---|
| ssini.1 | ⊢ 𝐴 ⊆ 𝐵 |
| ssini.2 | ⊢ 𝐴 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| ssini | ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssini.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssini.2 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) |
| 4 | ssin 4189 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∩ cin 3901 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-ss 3919 |
| This theorem is referenced by: inv1 4348 cnvrescnv 6142 hartogslem1 9428 xptrrel 14884 fbasrn 23797 limciun 25820 hlimcaui 31211 chdmm1i 31452 chm0i 31465 ledii 31511 lejdii 31513 mayetes3i 31704 mdslj2i 32295 mdslmd2i 32305 sumdmdlem2 32394 sigapildsys 34170 ssoninhaus 36481 bj-disj2r 37061 bj-idres 37193 bj-rvecsscvec 37337 icomnfinre 45591 fouriersw 46268 sge0split 46446 |
| Copyright terms: Public domain | W3C validator |