MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssini Structured version   Visualization version   GIF version

Theorem ssini 4232
Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.)
Hypotheses
Ref Expression
ssini.1 𝐴𝐵
ssini.2 𝐴𝐶
Assertion
Ref Expression
ssini 𝐴 ⊆ (𝐵𝐶)

Proof of Theorem ssini
StepHypRef Expression
1 ssini.1 . . 3 𝐴𝐵
2 ssini.2 . . 3 𝐴𝐶
31, 2pm3.2i 472 . 2 (𝐴𝐵𝐴𝐶)
4 ssin 4231 . 2 ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))
53, 4mpbi 229 1 𝐴 ⊆ (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 397  cin 3948  wss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966
This theorem is referenced by:  inv1  4395  cnvrescnv  6195  hartogslem1  9537  xptrrel  14927  fbasrn  23388  limciun  25411  hlimcaui  30489  chdmm1i  30730  chm0i  30743  ledii  30789  lejdii  30791  mayetes3i  30982  mdslj2i  31573  mdslmd2i  31583  sumdmdlem2  31672  sigapildsys  33160  ssoninhaus  35333  bj-disj2r  35909  bj-idres  36041  bj-rvecsscvec  36185  icomnfinre  44265  fouriersw  44947  sge0split  45125
  Copyright terms: Public domain W3C validator