Step | Hyp | Ref
| Expression |
1 | | el 5357 |
. . . . 5
⊢
∃𝑤 𝑥 ∈ 𝑤 |
2 | | ax-nul 5230 |
. . . . . 6
⊢
∃𝑧∀𝑥 ¬ 𝑥 ∈ 𝑧 |
3 | | sp 2176 |
. . . . . 6
⊢
(∀𝑥 ¬
𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑧) |
4 | 2, 3 | eximii 1839 |
. . . . 5
⊢
∃𝑧 ¬ 𝑥 ∈ 𝑧 |
5 | | exdistrv 1959 |
. . . . 5
⊢
(∃𝑤∃𝑧(𝑥 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑧) ↔ (∃𝑤 𝑥 ∈ 𝑤 ∧ ∃𝑧 ¬ 𝑥 ∈ 𝑧)) |
6 | 1, 4, 5 | mpbir2an 708 |
. . . 4
⊢
∃𝑤∃𝑧(𝑥 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑧) |
7 | | ax9 2120 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → (𝑥 ∈ 𝑤 → 𝑥 ∈ 𝑧)) |
8 | 7 | com12 32 |
. . . . . 6
⊢ (𝑥 ∈ 𝑤 → (𝑤 = 𝑧 → 𝑥 ∈ 𝑧)) |
9 | 8 | con3dimp 409 |
. . . . 5
⊢ ((𝑥 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑧) → ¬ 𝑤 = 𝑧) |
10 | 9 | 2eximi 1838 |
. . . 4
⊢
(∃𝑤∃𝑧(𝑥 ∈ 𝑤 ∧ ¬ 𝑥 ∈ 𝑧) → ∃𝑤∃𝑧 ¬ 𝑤 = 𝑧) |
11 | 6, 10 | ax-mp 5 |
. . 3
⊢
∃𝑤∃𝑧 ¬ 𝑤 = 𝑧 |
12 | | equequ2 2029 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑤 = 𝑧 ↔ 𝑤 = 𝑦)) |
13 | 12 | notbid 318 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 ↔ ¬ 𝑤 = 𝑦)) |
14 | | ax7 2019 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑥 = 𝑦 → 𝑤 = 𝑦)) |
15 | 14 | con3d 152 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (¬ 𝑤 = 𝑦 → ¬ 𝑥 = 𝑦)) |
16 | 15 | spimevw 1998 |
. . . . . 6
⊢ (¬
𝑤 = 𝑦 → ∃𝑥 ¬ 𝑥 = 𝑦) |
17 | 13, 16 | syl6bi 252 |
. . . . 5
⊢ (𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦)) |
18 | | ax7 2019 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 → 𝑧 = 𝑦)) |
19 | 18 | con3d 152 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (¬ 𝑧 = 𝑦 → ¬ 𝑥 = 𝑦)) |
20 | 19 | spimevw 1998 |
. . . . . 6
⊢ (¬
𝑧 = 𝑦 → ∃𝑥 ¬ 𝑥 = 𝑦) |
21 | 20 | a1d 25 |
. . . . 5
⊢ (¬
𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦)) |
22 | 17, 21 | pm2.61i 182 |
. . . 4
⊢ (¬
𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦) |
23 | 22 | exlimivv 1935 |
. . 3
⊢
(∃𝑤∃𝑧 ¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦) |
24 | 11, 23 | ax-mp 5 |
. 2
⊢
∃𝑥 ¬ 𝑥 = 𝑦 |
25 | | exnal 1829 |
. 2
⊢
(∃𝑥 ¬
𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) |
26 | 24, 25 | mpbi 229 |
1
⊢ ¬
∀𝑥 𝑥 = 𝑦 |