Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-gabima Structured version   Visualization version   GIF version

Theorem bj-gabima 36906
Description: Generalized class abstraction as a direct image.

TODO: improve the support lemmas elimag 6093 and fvelima 6987 to nonfreeness hypothesis (and for the latter, biconditional). (Contributed by BJ, 4-Oct-2024.)

Hypotheses
Ref Expression
bj-gabima.nf (𝜑 → ∀𝑥𝜑)
bj-gabima.nff (𝜑𝑥𝐹)
bj-gabima.fun (𝜑 → Fun 𝐹)
bj-gabima.dm (𝜑 → {𝑥𝜓} ⊆ dom 𝐹)
Assertion
Ref Expression
bj-gabima (𝜑 → {(𝐹𝑥) ∣ 𝑥𝜓} = (𝐹 “ {𝑥𝜓}))

Proof of Theorem bj-gabima
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-gabima.nf . . . 4 (𝜑 → ∀𝑥𝜑)
2 nfcvd 2909 . . . 4 (𝜑𝑥𝑦)
3 vex 3492 . . . . 5 𝑦 ∈ V
43a1i 11 . . . 4 (𝜑𝑦 ∈ V)
5 df-rex 3077 . . . . . 6 (∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦 ↔ ∃𝑧(𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦))
65a1i 11 . . . . 5 (𝜑 → (∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦 ↔ ∃𝑧(𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦)))
7 eqcom 2747 . . . . . . . 8 (𝑦 = (𝐹𝑧) ↔ (𝐹𝑧) = 𝑦)
8 df-clab 2718 . . . . . . . . 9 (𝑧 ∈ {𝑥𝜓} ↔ [𝑧 / 𝑥]𝜓)
98bicomi 224 . . . . . . . 8 ([𝑧 / 𝑥]𝜓𝑧 ∈ {𝑥𝜓})
107, 9anbi12ci 628 . . . . . . 7 ((𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ (𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦))
1110exbii 1846 . . . . . 6 (∃𝑧(𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ ∃𝑧(𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦))
1211a1i 11 . . . . 5 (𝜑 → (∃𝑧(𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ ∃𝑧(𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦)))
131nf5i 2146 . . . . . 6 𝑥𝜑
14 nfcv 2908 . . . . . . . . 9 𝑥𝑦
1514a1i 11 . . . . . . . 8 (𝜑𝑥𝑦)
16 bj-gabima.nff . . . . . . . . 9 (𝜑𝑥𝐹)
17 nfcv 2908 . . . . . . . . . 10 𝑥𝑧
1817a1i 11 . . . . . . . . 9 (𝜑𝑥𝑧)
1916, 18nffvd 6932 . . . . . . . 8 (𝜑𝑥(𝐹𝑧))
2015, 19nfeqd 2919 . . . . . . 7 (𝜑 → Ⅎ𝑥 𝑦 = (𝐹𝑧))
21 nfs1v 2157 . . . . . . . 8 𝑥[𝑧 / 𝑥]𝜓
2221a1i 11 . . . . . . 7 (𝜑 → Ⅎ𝑥[𝑧 / 𝑥]𝜓)
2320, 22nfand 1896 . . . . . 6 (𝜑 → Ⅎ𝑥(𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓))
24 fveq2 6920 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
2524eqeq2d 2751 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹𝑥)))
26 sbequ12r 2253 . . . . . . . 8 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜓𝜓))
2725, 26anbi12d 631 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ (𝑦 = (𝐹𝑥) ∧ 𝜓)))
2827a1i 11 . . . . . 6 (𝜑 → (𝑧 = 𝑥 → ((𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ (𝑦 = (𝐹𝑥) ∧ 𝜓))))
2913, 23, 28cbvexdw 2345 . . . . 5 (𝜑 → (∃𝑧(𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ ∃𝑥(𝑦 = (𝐹𝑥) ∧ 𝜓)))
306, 12, 293bitr2rd 308 . . . 4 (𝜑 → (∃𝑥(𝑦 = (𝐹𝑥) ∧ 𝜓) ↔ ∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦))
311, 2, 4, 30bj-elgab 36905 . . 3 (𝜑 → (𝑦 ∈ {(𝐹𝑥) ∣ 𝑥𝜓} ↔ ∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦))
32 bj-gabima.fun . . . . 5 (𝜑 → Fun 𝐹)
3332funfnd 6609 . . . 4 (𝜑𝐹 Fn dom 𝐹)
34 bj-gabima.dm . . . 4 (𝜑 → {𝑥𝜓} ⊆ dom 𝐹)
3533, 34fvelimabd 6995 . . 3 (𝜑 → (𝑦 ∈ (𝐹 “ {𝑥𝜓}) ↔ ∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦))
3631, 35bitr4d 282 . 2 (𝜑 → (𝑦 ∈ {(𝐹𝑥) ∣ 𝑥𝜓} ↔ 𝑦 ∈ (𝐹 “ {𝑥𝜓})))
3736eqrdv 2738 1 (𝜑 → {(𝐹𝑥) ∣ 𝑥𝜓} = (𝐹 “ {𝑥𝜓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  wnf 1781  [wsb 2064  wcel 2108  {cab 2717  wnfc 2893  wrex 3076  Vcvv 3488  wss 3976  dom cdm 5700  cima 5703  Fun wfun 6567  cfv 6573  {bj-cgab 36899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-bj-gab 36900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator