Step | Hyp | Ref
| Expression |
1 | | bj-gabima.nf |
. . . 4
⊢ (𝜑 → ∀𝑥𝜑) |
2 | | nfcvd 2909 |
. . . 4
⊢ (𝜑 → Ⅎ𝑥𝑦) |
3 | | vex 3434 |
. . . . 5
⊢ 𝑦 ∈ V |
4 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑦 ∈ V) |
5 | | df-rex 3071 |
. . . . . 6
⊢
(∃𝑧 ∈
{𝑥 ∣ 𝜓} (𝐹‘𝑧) = 𝑦 ↔ ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜓} ∧ (𝐹‘𝑧) = 𝑦)) |
6 | 5 | a1i 11 |
. . . . 5
⊢ (𝜑 → (∃𝑧 ∈ {𝑥 ∣ 𝜓} (𝐹‘𝑧) = 𝑦 ↔ ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜓} ∧ (𝐹‘𝑧) = 𝑦))) |
7 | | eqcom 2746 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑧) ↔ (𝐹‘𝑧) = 𝑦) |
8 | | df-clab 2717 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑥 ∣ 𝜓} ↔ [𝑧 / 𝑥]𝜓) |
9 | 8 | bicomi 223 |
. . . . . . . 8
⊢ ([𝑧 / 𝑥]𝜓 ↔ 𝑧 ∈ {𝑥 ∣ 𝜓}) |
10 | 7, 9 | anbi12ci 627 |
. . . . . . 7
⊢ ((𝑦 = (𝐹‘𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ (𝑧 ∈ {𝑥 ∣ 𝜓} ∧ (𝐹‘𝑧) = 𝑦)) |
11 | 10 | exbii 1853 |
. . . . . 6
⊢
(∃𝑧(𝑦 = (𝐹‘𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜓} ∧ (𝐹‘𝑧) = 𝑦)) |
12 | 11 | a1i 11 |
. . . . 5
⊢ (𝜑 → (∃𝑧(𝑦 = (𝐹‘𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ ∃𝑧(𝑧 ∈ {𝑥 ∣ 𝜓} ∧ (𝐹‘𝑧) = 𝑦))) |
13 | 1 | nf5i 2145 |
. . . . . 6
⊢
Ⅎ𝑥𝜑 |
14 | | nfcv 2908 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑦 |
15 | 14 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → Ⅎ𝑥𝑦) |
16 | | bj-gabima.nff |
. . . . . . . . 9
⊢ (𝜑 → Ⅎ𝑥𝐹) |
17 | | nfcv 2908 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑧 |
18 | 17 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → Ⅎ𝑥𝑧) |
19 | 16, 18 | nffvd 6780 |
. . . . . . . 8
⊢ (𝜑 → Ⅎ𝑥(𝐹‘𝑧)) |
20 | 15, 19 | nfeqd 2918 |
. . . . . . 7
⊢ (𝜑 → Ⅎ𝑥 𝑦 = (𝐹‘𝑧)) |
21 | | nfs1v 2156 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜓 |
22 | 21 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑥]𝜓) |
23 | 20, 22 | nfand 1903 |
. . . . . 6
⊢ (𝜑 → Ⅎ𝑥(𝑦 = (𝐹‘𝑧) ∧ [𝑧 / 𝑥]𝜓)) |
24 | | fveq2 6768 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) |
25 | 24 | eqeq2d 2750 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (𝑦 = (𝐹‘𝑧) ↔ 𝑦 = (𝐹‘𝑥))) |
26 | | sbequ12r 2248 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜓 ↔ 𝜓)) |
27 | 25, 26 | anbi12d 630 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → ((𝑦 = (𝐹‘𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ (𝑦 = (𝐹‘𝑥) ∧ 𝜓))) |
28 | 27 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑧 = 𝑥 → ((𝑦 = (𝐹‘𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ (𝑦 = (𝐹‘𝑥) ∧ 𝜓)))) |
29 | 13, 23, 28 | cbvexdw 2339 |
. . . . 5
⊢ (𝜑 → (∃𝑧(𝑦 = (𝐹‘𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ ∃𝑥(𝑦 = (𝐹‘𝑥) ∧ 𝜓))) |
30 | 6, 12, 29 | 3bitr2rd 307 |
. . . 4
⊢ (𝜑 → (∃𝑥(𝑦 = (𝐹‘𝑥) ∧ 𝜓) ↔ ∃𝑧 ∈ {𝑥 ∣ 𝜓} (𝐹‘𝑧) = 𝑦)) |
31 | 1, 2, 4, 30 | bj-elgab 35106 |
. . 3
⊢ (𝜑 → (𝑦 ∈ {(𝐹‘𝑥) ∣ 𝑥 ∣ 𝜓} ↔ ∃𝑧 ∈ {𝑥 ∣ 𝜓} (𝐹‘𝑧) = 𝑦)) |
32 | | bj-gabima.fun |
. . . . 5
⊢ (𝜑 → Fun 𝐹) |
33 | 32 | funfnd 6461 |
. . . 4
⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
34 | | bj-gabima.dm |
. . . 4
⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ dom 𝐹) |
35 | 33, 34 | fvelimabd 6836 |
. . 3
⊢ (𝜑 → (𝑦 ∈ (𝐹 “ {𝑥 ∣ 𝜓}) ↔ ∃𝑧 ∈ {𝑥 ∣ 𝜓} (𝐹‘𝑧) = 𝑦)) |
36 | 31, 35 | bitr4d 281 |
. 2
⊢ (𝜑 → (𝑦 ∈ {(𝐹‘𝑥) ∣ 𝑥 ∣ 𝜓} ↔ 𝑦 ∈ (𝐹 “ {𝑥 ∣ 𝜓}))) |
37 | 36 | eqrdv 2737 |
1
⊢ (𝜑 → {(𝐹‘𝑥) ∣ 𝑥 ∣ 𝜓} = (𝐹 “ {𝑥 ∣ 𝜓})) |