Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-gabima Structured version   Visualization version   GIF version

Theorem bj-gabima 35820
Description: Generalized class abstraction as a direct image.

TODO: improve the support lemmas elimag 6064 and fvelima 6958 to nonfreeness hypothesis (and for the latter, biconditional). (Contributed by BJ, 4-Oct-2024.)

Hypotheses
Ref Expression
bj-gabima.nf (𝜑 → ∀𝑥𝜑)
bj-gabima.nff (𝜑𝑥𝐹)
bj-gabima.fun (𝜑 → Fun 𝐹)
bj-gabima.dm (𝜑 → {𝑥𝜓} ⊆ dom 𝐹)
Assertion
Ref Expression
bj-gabima (𝜑 → {(𝐹𝑥) ∣ 𝑥𝜓} = (𝐹 “ {𝑥𝜓}))

Proof of Theorem bj-gabima
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-gabima.nf . . . 4 (𝜑 → ∀𝑥𝜑)
2 nfcvd 2905 . . . 4 (𝜑𝑥𝑦)
3 vex 3479 . . . . 5 𝑦 ∈ V
43a1i 11 . . . 4 (𝜑𝑦 ∈ V)
5 df-rex 3072 . . . . . 6 (∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦 ↔ ∃𝑧(𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦))
65a1i 11 . . . . 5 (𝜑 → (∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦 ↔ ∃𝑧(𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦)))
7 eqcom 2740 . . . . . . . 8 (𝑦 = (𝐹𝑧) ↔ (𝐹𝑧) = 𝑦)
8 df-clab 2711 . . . . . . . . 9 (𝑧 ∈ {𝑥𝜓} ↔ [𝑧 / 𝑥]𝜓)
98bicomi 223 . . . . . . . 8 ([𝑧 / 𝑥]𝜓𝑧 ∈ {𝑥𝜓})
107, 9anbi12ci 629 . . . . . . 7 ((𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ (𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦))
1110exbii 1851 . . . . . 6 (∃𝑧(𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ ∃𝑧(𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦))
1211a1i 11 . . . . 5 (𝜑 → (∃𝑧(𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ ∃𝑧(𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦)))
131nf5i 2143 . . . . . 6 𝑥𝜑
14 nfcv 2904 . . . . . . . . 9 𝑥𝑦
1514a1i 11 . . . . . . . 8 (𝜑𝑥𝑦)
16 bj-gabima.nff . . . . . . . . 9 (𝜑𝑥𝐹)
17 nfcv 2904 . . . . . . . . . 10 𝑥𝑧
1817a1i 11 . . . . . . . . 9 (𝜑𝑥𝑧)
1916, 18nffvd 6904 . . . . . . . 8 (𝜑𝑥(𝐹𝑧))
2015, 19nfeqd 2914 . . . . . . 7 (𝜑 → Ⅎ𝑥 𝑦 = (𝐹𝑧))
21 nfs1v 2154 . . . . . . . 8 𝑥[𝑧 / 𝑥]𝜓
2221a1i 11 . . . . . . 7 (𝜑 → Ⅎ𝑥[𝑧 / 𝑥]𝜓)
2320, 22nfand 1901 . . . . . 6 (𝜑 → Ⅎ𝑥(𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓))
24 fveq2 6892 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
2524eqeq2d 2744 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹𝑥)))
26 sbequ12r 2245 . . . . . . . 8 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜓𝜓))
2725, 26anbi12d 632 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ (𝑦 = (𝐹𝑥) ∧ 𝜓)))
2827a1i 11 . . . . . 6 (𝜑 → (𝑧 = 𝑥 → ((𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ (𝑦 = (𝐹𝑥) ∧ 𝜓))))
2913, 23, 28cbvexdw 2336 . . . . 5 (𝜑 → (∃𝑧(𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ ∃𝑥(𝑦 = (𝐹𝑥) ∧ 𝜓)))
306, 12, 293bitr2rd 308 . . . 4 (𝜑 → (∃𝑥(𝑦 = (𝐹𝑥) ∧ 𝜓) ↔ ∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦))
311, 2, 4, 30bj-elgab 35819 . . 3 (𝜑 → (𝑦 ∈ {(𝐹𝑥) ∣ 𝑥𝜓} ↔ ∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦))
32 bj-gabima.fun . . . . 5 (𝜑 → Fun 𝐹)
3332funfnd 6580 . . . 4 (𝜑𝐹 Fn dom 𝐹)
34 bj-gabima.dm . . . 4 (𝜑 → {𝑥𝜓} ⊆ dom 𝐹)
3533, 34fvelimabd 6966 . . 3 (𝜑 → (𝑦 ∈ (𝐹 “ {𝑥𝜓}) ↔ ∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦))
3631, 35bitr4d 282 . 2 (𝜑 → (𝑦 ∈ {(𝐹𝑥) ∣ 𝑥𝜓} ↔ 𝑦 ∈ (𝐹 “ {𝑥𝜓})))
3736eqrdv 2731 1 (𝜑 → {(𝐹𝑥) ∣ 𝑥𝜓} = (𝐹 “ {𝑥𝜓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wex 1782  wnf 1786  [wsb 2068  wcel 2107  {cab 2710  wnfc 2884  wrex 3071  Vcvv 3475  wss 3949  dom cdm 5677  cima 5680  Fun wfun 6538  cfv 6544  {bj-cgab 35813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-bj-gab 35814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator