Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-gabima Structured version   Visualization version   GIF version

Theorem bj-gabima 36928
Description: Generalized class abstraction as a direct image.

TODO: improve the support lemmas elimag 6035 and fvelima 6926 to nonfreeness hypothesis (and for the latter, biconditional). (Contributed by BJ, 4-Oct-2024.)

Hypotheses
Ref Expression
bj-gabima.nf (𝜑 → ∀𝑥𝜑)
bj-gabima.nff (𝜑𝑥𝐹)
bj-gabima.fun (𝜑 → Fun 𝐹)
bj-gabima.dm (𝜑 → {𝑥𝜓} ⊆ dom 𝐹)
Assertion
Ref Expression
bj-gabima (𝜑 → {(𝐹𝑥) ∣ 𝑥𝜓} = (𝐹 “ {𝑥𝜓}))

Proof of Theorem bj-gabima
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-gabima.nf . . . 4 (𝜑 → ∀𝑥𝜑)
2 nfcvd 2892 . . . 4 (𝜑𝑥𝑦)
3 vex 3451 . . . . 5 𝑦 ∈ V
43a1i 11 . . . 4 (𝜑𝑦 ∈ V)
5 df-rex 3054 . . . . . 6 (∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦 ↔ ∃𝑧(𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦))
65a1i 11 . . . . 5 (𝜑 → (∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦 ↔ ∃𝑧(𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦)))
7 eqcom 2736 . . . . . . . 8 (𝑦 = (𝐹𝑧) ↔ (𝐹𝑧) = 𝑦)
8 df-clab 2708 . . . . . . . . 9 (𝑧 ∈ {𝑥𝜓} ↔ [𝑧 / 𝑥]𝜓)
98bicomi 224 . . . . . . . 8 ([𝑧 / 𝑥]𝜓𝑧 ∈ {𝑥𝜓})
107, 9anbi12ci 629 . . . . . . 7 ((𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ (𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦))
1110exbii 1848 . . . . . 6 (∃𝑧(𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ ∃𝑧(𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦))
1211a1i 11 . . . . 5 (𝜑 → (∃𝑧(𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ ∃𝑧(𝑧 ∈ {𝑥𝜓} ∧ (𝐹𝑧) = 𝑦)))
131nf5i 2147 . . . . . 6 𝑥𝜑
14 nfcv 2891 . . . . . . . . 9 𝑥𝑦
1514a1i 11 . . . . . . . 8 (𝜑𝑥𝑦)
16 bj-gabima.nff . . . . . . . . 9 (𝜑𝑥𝐹)
17 nfcv 2891 . . . . . . . . . 10 𝑥𝑧
1817a1i 11 . . . . . . . . 9 (𝜑𝑥𝑧)
1916, 18nffvd 6870 . . . . . . . 8 (𝜑𝑥(𝐹𝑧))
2015, 19nfeqd 2902 . . . . . . 7 (𝜑 → Ⅎ𝑥 𝑦 = (𝐹𝑧))
21 nfs1v 2157 . . . . . . . 8 𝑥[𝑧 / 𝑥]𝜓
2221a1i 11 . . . . . . 7 (𝜑 → Ⅎ𝑥[𝑧 / 𝑥]𝜓)
2320, 22nfand 1897 . . . . . 6 (𝜑 → Ⅎ𝑥(𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓))
24 fveq2 6858 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
2524eqeq2d 2740 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹𝑥)))
26 sbequ12r 2253 . . . . . . . 8 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜓𝜓))
2725, 26anbi12d 632 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ (𝑦 = (𝐹𝑥) ∧ 𝜓)))
2827a1i 11 . . . . . 6 (𝜑 → (𝑧 = 𝑥 → ((𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ (𝑦 = (𝐹𝑥) ∧ 𝜓))))
2913, 23, 28cbvexdw 2337 . . . . 5 (𝜑 → (∃𝑧(𝑦 = (𝐹𝑧) ∧ [𝑧 / 𝑥]𝜓) ↔ ∃𝑥(𝑦 = (𝐹𝑥) ∧ 𝜓)))
306, 12, 293bitr2rd 308 . . . 4 (𝜑 → (∃𝑥(𝑦 = (𝐹𝑥) ∧ 𝜓) ↔ ∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦))
311, 2, 4, 30bj-elgab 36927 . . 3 (𝜑 → (𝑦 ∈ {(𝐹𝑥) ∣ 𝑥𝜓} ↔ ∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦))
32 bj-gabima.fun . . . . 5 (𝜑 → Fun 𝐹)
3332funfnd 6547 . . . 4 (𝜑𝐹 Fn dom 𝐹)
34 bj-gabima.dm . . . 4 (𝜑 → {𝑥𝜓} ⊆ dom 𝐹)
3533, 34fvelimabd 6934 . . 3 (𝜑 → (𝑦 ∈ (𝐹 “ {𝑥𝜓}) ↔ ∃𝑧 ∈ {𝑥𝜓} (𝐹𝑧) = 𝑦))
3631, 35bitr4d 282 . 2 (𝜑 → (𝑦 ∈ {(𝐹𝑥) ∣ 𝑥𝜓} ↔ 𝑦 ∈ (𝐹 “ {𝑥𝜓})))
3736eqrdv 2727 1 (𝜑 → {(𝐹𝑥) ∣ 𝑥𝜓} = (𝐹 “ {𝑥𝜓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wnf 1783  [wsb 2065  wcel 2109  {cab 2707  wnfc 2876  wrex 3053  Vcvv 3447  wss 3914  dom cdm 5638  cima 5641  Fun wfun 6505  cfv 6511  {bj-cgab 36921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-bj-gab 36922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator