Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid7 Structured version   Visualization version   GIF version

Theorem bj-elid7 37194
Description: Characterization of the elements of the diagonal of a Cartesian square. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-elid7 (⟨𝐵, 𝐶⟩ ∈ ( I ↾ 𝐴) ↔ (𝐵𝐴𝐵 = 𝐶))

Proof of Theorem bj-elid7
StepHypRef Expression
1 df-br 5125 . 2 (𝐵( I ↾ 𝐴)𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ ( I ↾ 𝐴))
2 bj-idreseqb 37186 . 2 (𝐵( I ↾ 𝐴)𝐶 ↔ (𝐵𝐴𝐵 = 𝐶))
31, 2bitr3i 277 1 (⟨𝐵, 𝐶⟩ ∈ ( I ↾ 𝐴) ↔ (𝐵𝐴𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4612   class class class wbr 5124   I cid 5552  cres 5661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-res 5671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator