| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elid7 | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of the diagonal of a Cartesian square. (Contributed by BJ, 22-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-elid7 | ⊢ (〈𝐵, 𝐶〉 ∈ ( I ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5093 | . 2 ⊢ (𝐵( I ↾ 𝐴)𝐶 ↔ 〈𝐵, 𝐶〉 ∈ ( I ↾ 𝐴)) | |
| 2 | bj-idreseqb 37147 | . 2 ⊢ (𝐵( I ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) | |
| 3 | 1, 2 | bitr3i 277 | 1 ⊢ (〈𝐵, 𝐶〉 ∈ ( I ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 I cid 5513 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-res 5631 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |