Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid7 Structured version   Visualization version   GIF version

Theorem bj-elid7 35269
Description: Characterization of the elements of the diagonal of a Cartesian square. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-elid7 (⟨𝐵, 𝐶⟩ ∈ ( I ↾ 𝐴) ↔ (𝐵𝐴𝐵 = 𝐶))

Proof of Theorem bj-elid7
StepHypRef Expression
1 df-br 5071 . 2 (𝐵( I ↾ 𝐴)𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ ( I ↾ 𝐴))
2 bj-idreseqb 35261 . 2 (𝐵( I ↾ 𝐴)𝐶 ↔ (𝐵𝐴𝐵 = 𝐶))
31, 2bitr3i 276 1 (⟨𝐵, 𝐶⟩ ∈ ( I ↾ 𝐴) ↔ (𝐵𝐴𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070   I cid 5479  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-res 5592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator