![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoore | Structured version Visualization version GIF version |
Description: Characterization of Moore collections. Note that there is no sethood hypothesis on 𝐴: it is implied by either side (this is obvious for the LHS, and is the content of bj-mooreset 37068 for the RHS). (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismoore | ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐴 ∈ Moore → 𝐴 ∈ V) | |
2 | bj-mooreset 37068 | . 2 ⊢ (∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 → 𝐴 ∈ V) | |
3 | pweq 4636 | . . . 4 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
4 | unieq 4942 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴) | |
5 | 4 | ineq1d 4240 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∪ 𝑦 ∩ ∩ 𝑥) = (∪ 𝐴 ∩ ∩ 𝑥)) |
6 | id 22 | . . . . 5 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
7 | 5, 6 | eleq12d 2838 | . . . 4 ⊢ (𝑦 = 𝐴 → ((∪ 𝑦 ∩ ∩ 𝑥) ∈ 𝑦 ↔ (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
8 | 3, 7 | raleqbidv 3354 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝒫 𝑦(∪ 𝑦 ∩ ∩ 𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
9 | df-bj-moore 37070 | . . 3 ⊢ Moore = {𝑦 ∣ ∀𝑥 ∈ 𝒫 𝑦(∪ 𝑦 ∩ ∩ 𝑥) ∈ 𝑦} | |
10 | 8, 9 | elab2g 3696 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
11 | 1, 2, 10 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∩ cin 3975 𝒫 cpw 4622 ∪ cuni 4931 ∩ cint 4970 Moorecmoore 37069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-nul 4353 df-pw 4624 df-uni 4932 df-int 4971 df-bj-moore 37070 |
This theorem is referenced by: bj-ismoored0 37072 bj-ismoored 37073 bj-ismooredr 37075 |
Copyright terms: Public domain | W3C validator |