![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoore | Structured version Visualization version GIF version |
Description: Characterization of Moore collections. Note that there is no sethood hypothesis on 𝐴: it is implied by either side (this is obvious for the LHS, and is the content of bj-mooreset 37085 for the RHS). (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismoore | ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . 2 ⊢ (𝐴 ∈ Moore → 𝐴 ∈ V) | |
2 | bj-mooreset 37085 | . 2 ⊢ (∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 → 𝐴 ∈ V) | |
3 | pweq 4619 | . . . 4 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
4 | unieq 4923 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴) | |
5 | 4 | ineq1d 4227 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∪ 𝑦 ∩ ∩ 𝑥) = (∪ 𝐴 ∩ ∩ 𝑥)) |
6 | id 22 | . . . . 5 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
7 | 5, 6 | eleq12d 2833 | . . . 4 ⊢ (𝑦 = 𝐴 → ((∪ 𝑦 ∩ ∩ 𝑥) ∈ 𝑦 ↔ (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
8 | 3, 7 | raleqbidv 3344 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝒫 𝑦(∪ 𝑦 ∩ ∩ 𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
9 | df-bj-moore 37087 | . . 3 ⊢ Moore = {𝑦 ∣ ∀𝑥 ∈ 𝒫 𝑦(∪ 𝑦 ∩ ∩ 𝑥) ∈ 𝑦} | |
10 | 8, 9 | elab2g 3683 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
11 | 1, 2, 10 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ∩ cin 3962 𝒫 cpw 4605 ∪ cuni 4912 ∩ cint 4951 Moorecmoore 37086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-ss 3980 df-nul 4340 df-pw 4607 df-uni 4913 df-int 4952 df-bj-moore 37087 |
This theorem is referenced by: bj-ismoored0 37089 bj-ismoored 37090 bj-ismooredr 37092 |
Copyright terms: Public domain | W3C validator |