Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoore | Structured version Visualization version GIF version |
Description: Characterization of Moore collections. Note that there is no sethood hypothesis on 𝐴: it is implied by either side (this is obvious for the LHS, and is the content of bj-mooreset 35252 for the RHS). (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismoore | ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3448 | . 2 ⊢ (𝐴 ∈ Moore → 𝐴 ∈ V) | |
2 | bj-mooreset 35252 | . 2 ⊢ (∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴 → 𝐴 ∈ V) | |
3 | pweq 4554 | . . . 4 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
4 | unieq 4855 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴) | |
5 | 4 | ineq1d 4150 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∪ 𝑦 ∩ ∩ 𝑥) = (∪ 𝐴 ∩ ∩ 𝑥)) |
6 | id 22 | . . . . 5 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
7 | 5, 6 | eleq12d 2834 | . . . 4 ⊢ (𝑦 = 𝐴 → ((∪ 𝑦 ∩ ∩ 𝑥) ∈ 𝑦 ↔ (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
8 | 3, 7 | raleqbidv 3334 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝒫 𝑦(∪ 𝑦 ∩ ∩ 𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
9 | df-bj-moore 35254 | . . 3 ⊢ Moore = {𝑦 ∣ ∀𝑥 ∈ 𝒫 𝑦(∪ 𝑦 ∩ ∩ 𝑥) ∈ 𝑦} | |
10 | 8, 9 | elab2g 3612 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
11 | 1, 2, 10 | pm5.21nii 379 | 1 ⊢ (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∀wral 3065 Vcvv 3430 ∩ cin 3890 𝒫 cpw 4538 ∪ cuni 4844 ∩ cint 4884 Moorecmoore 35253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-nul 4262 df-pw 4540 df-uni 4845 df-int 4885 df-bj-moore 35254 |
This theorem is referenced by: bj-ismoored0 35256 bj-ismoored 35257 bj-ismooredr 35259 |
Copyright terms: Public domain | W3C validator |