Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoore Structured version   Visualization version   GIF version

Theorem bj-ismoore 34917
Description: Characterization of Moore collections. Note that there is no sethood hypothesis on 𝐴: it is implied by either side (this is obvious for the LHS, and is the content of bj-mooreset 34914 for the RHS). (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-ismoore (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-ismoore
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3416 . 2 (𝐴Moore𝐴 ∈ V)
2 bj-mooreset 34914 . 2 (∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴𝐴 ∈ V)
3 pweq 4504 . . . 4 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
4 unieq 4807 . . . . . 6 (𝑦 = 𝐴 𝑦 = 𝐴)
54ineq1d 4102 . . . . 5 (𝑦 = 𝐴 → ( 𝑦 𝑥) = ( 𝐴 𝑥))
6 id 22 . . . . 5 (𝑦 = 𝐴𝑦 = 𝐴)
75, 6eleq12d 2827 . . . 4 (𝑦 = 𝐴 → (( 𝑦 𝑥) ∈ 𝑦 ↔ ( 𝐴 𝑥) ∈ 𝐴))
83, 7raleqbidv 3304 . . 3 (𝑦 = 𝐴 → (∀𝑥 ∈ 𝒫 𝑦( 𝑦 𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴))
9 df-bj-moore 34916 . . 3 Moore = {𝑦 ∣ ∀𝑥 ∈ 𝒫 𝑦( 𝑦 𝑥) ∈ 𝑦}
108, 9elab2g 3575 . 2 (𝐴 ∈ V → (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴))
111, 2, 10pm5.21nii 383 1 (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1542  wcel 2114  wral 3053  Vcvv 3398  cin 3842  𝒫 cpw 4488   cuni 4796   cint 4836  Moorecmoore 34915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rab 3062  df-v 3400  df-dif 3846  df-in 3850  df-ss 3860  df-nul 4212  df-pw 4490  df-uni 4797  df-int 4837  df-bj-moore 34916
This theorem is referenced by:  bj-ismoored0  34918  bj-ismoored  34919  bj-ismooredr  34921
  Copyright terms: Public domain W3C validator