Proof of Theorem bj-ismooredr2
Step | Hyp | Ref
| Expression |
1 | | bj-ismooredr2.2 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) → ∩ 𝑥
∈ 𝐴) |
2 | 1 | anassrs 471 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ 𝑥 ≠ ∅) → ∩ 𝑥
∈ 𝐴) |
3 | | intssuni2 4866 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∩ 𝑥
⊆ ∪ 𝐴) |
4 | | dfss 3878 |
. . . . . . . 8
⊢ (∩ 𝑥
⊆ ∪ 𝐴 ↔ ∩ 𝑥 = (∩
𝑥 ∩ ∪ 𝐴)) |
5 | | incom 4108 |
. . . . . . . . . . 11
⊢ (∩ 𝑥
∩ ∪ 𝐴) = (∪ 𝐴 ∩ ∩ 𝑥) |
6 | 5 | eqeq2i 2771 |
. . . . . . . . . 10
⊢ (∩ 𝑥 =
(∩ 𝑥 ∩ ∪ 𝐴) ↔ ∩ 𝑥 =
(∪ 𝐴 ∩ ∩ 𝑥)) |
7 | | eleq1 2839 |
. . . . . . . . . 10
⊢ (∩ 𝑥 =
(∪ 𝐴 ∩ ∩ 𝑥) → (∩ 𝑥
∈ 𝐴 ↔ (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
8 | 6, 7 | sylbi 220 |
. . . . . . . . 9
⊢ (∩ 𝑥 =
(∩ 𝑥 ∩ ∪ 𝐴) → (∩ 𝑥
∈ 𝐴 ↔ (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
9 | 8 | biimpd 232 |
. . . . . . . 8
⊢ (∩ 𝑥 =
(∩ 𝑥 ∩ ∪ 𝐴) → (∩ 𝑥
∈ 𝐴 → (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
10 | 4, 9 | sylbi 220 |
. . . . . . 7
⊢ (∩ 𝑥
⊆ ∪ 𝐴 → (∩ 𝑥 ∈ 𝐴 → (∪ 𝐴 ∩ ∩ 𝑥)
∈ 𝐴)) |
11 | 3, 10 | syl 17 |
. . . . . 6
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (∩ 𝑥
∈ 𝐴 → (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
12 | 11 | adantll 713 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ 𝑥 ≠ ∅) → (∩ 𝑥
∈ 𝐴 → (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
13 | 2, 12 | mpd 15 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ 𝑥 ≠ ∅) → (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴) |
14 | 13 | ex 416 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (𝑥 ≠ ∅ → (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
15 | | nne 2955 |
. . . . 5
⊢ (¬
𝑥 ≠ ∅ ↔ 𝑥 = ∅) |
16 | | bj-ismooredr2.1 |
. . . . . 6
⊢ (𝜑 → ∪ 𝐴
∈ 𝐴) |
17 | | rint0 4883 |
. . . . . 6
⊢ (𝑥 = ∅ → (∪ 𝐴
∩ ∩ 𝑥) = ∪ 𝐴) |
18 | | eleq1a 2847 |
. . . . . 6
⊢ (∪ 𝐴
∈ 𝐴 → ((∪ 𝐴
∩ ∩ 𝑥) = ∪ 𝐴 → (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
19 | 16, 17, 18 | syl2im 40 |
. . . . 5
⊢ (𝜑 → (𝑥 = ∅ → (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
20 | 15, 19 | syl5bi 245 |
. . . 4
⊢ (𝜑 → (¬ 𝑥 ≠ ∅ → (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
21 | 20 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (¬ 𝑥 ≠ ∅ → (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
22 | 14, 21 | pm2.61d 182 |
. 2
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (∪ 𝐴 ∩ ∩ 𝑥)
∈ 𝐴) |
23 | 22 | bj-ismooredr 34838 |
1
⊢ (𝜑 → 𝐴 ∈ Moore) |