Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr2eq | Structured version Visualization version GIF version |
Description: Substitution property for pr2. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-pr2eq | ⊢ (𝐴 = 𝐵 → pr2 𝐴 = pr2 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-projeq2 35110 | . 2 ⊢ (𝐴 = 𝐵 → (1o Proj 𝐴) = (1o Proj 𝐵)) | |
2 | df-bj-pr2 35132 | . 2 ⊢ pr2 𝐴 = (1o Proj 𝐴) | |
3 | df-bj-pr2 35132 | . 2 ⊢ pr2 𝐵 = (1o Proj 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → pr2 𝐴 = pr2 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 1oc1o 8260 Proj bj-cproj 35107 pr2 bj-cpr2 35131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-bj-proj 35108 df-bj-pr2 35132 |
This theorem is referenced by: bj-pr22val 35136 bj-2uplth 35138 |
Copyright terms: Public domain | W3C validator |