Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr2eq Structured version   Visualization version   GIF version

Theorem bj-pr2eq 37039
Description: Substitution property for pr2. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr2eq (𝐴 = 𝐵 → pr2 𝐴 = pr2 𝐵)

Proof of Theorem bj-pr2eq
StepHypRef Expression
1 bj-projeq2 37016 . 2 (𝐴 = 𝐵 → (1o Proj 𝐴) = (1o Proj 𝐵))
2 df-bj-pr2 37038 . 2 pr2 𝐴 = (1o Proj 𝐴)
3 df-bj-pr2 37038 . 2 pr2 𝐵 = (1o Proj 𝐵)
41, 2, 33eqtr4g 2796 1 (𝐴 = 𝐵 → pr2 𝐴 = pr2 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  1oc1o 8478   Proj bj-cproj 37013  pr2 bj-cpr2 37037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-bj-proj 37014  df-bj-pr2 37038
This theorem is referenced by:  bj-pr22val  37042  bj-2uplth  37044
  Copyright terms: Public domain W3C validator