Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr2eq Structured version   Visualization version   GIF version

Theorem bj-pr2eq 36200
Description: Substitution property for pr2. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr2eq (𝐴 = 𝐵 → pr2 𝐴 = pr2 𝐵)

Proof of Theorem bj-pr2eq
StepHypRef Expression
1 bj-projeq2 36177 . 2 (𝐴 = 𝐵 → (1o Proj 𝐴) = (1o Proj 𝐵))
2 df-bj-pr2 36199 . 2 pr2 𝐴 = (1o Proj 𝐴)
3 df-bj-pr2 36199 . 2 pr2 𝐵 = (1o Proj 𝐵)
41, 2, 33eqtr4g 2797 1 (𝐴 = 𝐵 → pr2 𝐴 = pr2 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  1oc1o 8461   Proj bj-cproj 36174  pr2 bj-cpr2 36198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-bj-proj 36175  df-bj-pr2 36199
This theorem is referenced by:  bj-pr22val  36203  bj-2uplth  36205
  Copyright terms: Public domain W3C validator