Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr2eq Structured version   Visualization version   GIF version

Theorem bj-pr2eq 36982
Description: Substitution property for pr2. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr2eq (𝐴 = 𝐵 → pr2 𝐴 = pr2 𝐵)

Proof of Theorem bj-pr2eq
StepHypRef Expression
1 bj-projeq2 36959 . 2 (𝐴 = 𝐵 → (1o Proj 𝐴) = (1o Proj 𝐵))
2 df-bj-pr2 36981 . 2 pr2 𝐴 = (1o Proj 𝐴)
3 df-bj-pr2 36981 . 2 pr2 𝐵 = (1o Proj 𝐵)
41, 2, 33eqtr4g 2805 1 (𝐴 = 𝐵 → pr2 𝐴 = pr2 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  1oc1o 8515   Proj bj-cproj 36956  pr2 bj-cpr2 36980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-bj-proj 36957  df-bj-pr2 36981
This theorem is referenced by:  bj-pr22val  36985  bj-2uplth  36987
  Copyright terms: Public domain W3C validator