| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr2eq | Structured version Visualization version GIF version | ||
| Description: Substitution property for pr2. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-pr2eq | ⊢ (𝐴 = 𝐵 → pr2 𝐴 = pr2 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-projeq2 36981 | . 2 ⊢ (𝐴 = 𝐵 → (1o Proj 𝐴) = (1o Proj 𝐵)) | |
| 2 | df-bj-pr2 37003 | . 2 ⊢ pr2 𝐴 = (1o Proj 𝐴) | |
| 3 | df-bj-pr2 37003 | . 2 ⊢ pr2 𝐵 = (1o Proj 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → pr2 𝐴 = pr2 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 1oc1o 8427 Proj bj-cproj 36978 pr2 bj-cpr2 37002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-bj-proj 36979 df-bj-pr2 37003 |
| This theorem is referenced by: bj-pr22val 37007 bj-2uplth 37009 |
| Copyright terms: Public domain | W3C validator |