| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr22val | Structured version Visualization version GIF version | ||
| Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-pr22val | ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-2upl 37006 | . . . 4 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 2 | bj-pr2eq 37011 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
| 4 | bj-pr2un 37012 | . . 3 ⊢ pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) | |
| 5 | 3, 4 | eqtri 2753 | . 2 ⊢ pr2 ⦅𝐴, 𝐵⦆ = (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) |
| 6 | df-bj-1upl 36993 | . . . . 5 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
| 7 | bj-pr2eq 37011 | . . . . 5 ⊢ (⦅𝐴⦆ = ({∅} × tag 𝐴) → pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴)) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴) |
| 9 | bj-pr2val 37013 | . . . 4 ⊢ pr2 ({∅} × tag 𝐴) = if(∅ = 1o, 𝐴, ∅) | |
| 10 | 1n0 8455 | . . . . . 6 ⊢ 1o ≠ ∅ | |
| 11 | 10 | nesymi 2983 | . . . . 5 ⊢ ¬ ∅ = 1o |
| 12 | 11 | iffalsei 4501 | . . . 4 ⊢ if(∅ = 1o, 𝐴, ∅) = ∅ |
| 13 | 8, 9, 12 | 3eqtri 2757 | . . 3 ⊢ pr2 ⦅𝐴⦆ = ∅ |
| 14 | bj-pr2val 37013 | . . . 4 ⊢ pr2 ({1o} × tag 𝐵) = if(1o = 1o, 𝐵, ∅) | |
| 15 | eqid 2730 | . . . . 5 ⊢ 1o = 1o | |
| 16 | 15 | iftruei 4498 | . . . 4 ⊢ if(1o = 1o, 𝐵, ∅) = 𝐵 |
| 17 | 14, 16 | eqtri 2753 | . . 3 ⊢ pr2 ({1o} × tag 𝐵) = 𝐵 |
| 18 | 13, 17 | uneq12i 4132 | . 2 ⊢ (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) = (∅ ∪ 𝐵) |
| 19 | 0un 4362 | . 2 ⊢ (∅ ∪ 𝐵) = 𝐵 | |
| 20 | 5, 18, 19 | 3eqtri 2757 | 1 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3915 ∅c0 4299 ifcif 4491 {csn 4592 × cxp 5639 1oc1o 8430 tag bj-ctag 36969 ⦅bj-c1upl 36992 ⦅bj-c2uple 37005 pr2 bj-cpr2 37009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-1o 8437 df-bj-sngl 36961 df-bj-tag 36970 df-bj-proj 36986 df-bj-1upl 36993 df-bj-2upl 37006 df-bj-pr2 37010 |
| This theorem is referenced by: bj-2uplth 37016 bj-2uplex 37017 |
| Copyright terms: Public domain | W3C validator |