Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr22val Structured version   Visualization version   GIF version

Theorem bj-pr22val 33528
 Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr22val pr2𝐴, 𝐵⦆ = 𝐵

Proof of Theorem bj-pr22val
StepHypRef Expression
1 df-bj-2upl 33520 . . . 4 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-pr2eq 33525 . . . 4 (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr2𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
31, 2ax-mp 5 . . 3 pr2𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
4 bj-pr2un 33526 . . 3 pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵))
53, 4eqtri 2849 . 2 pr2𝐴, 𝐵⦆ = (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵))
6 df-bj-1upl 33507 . . . . 5 𝐴⦆ = ({∅} × tag 𝐴)
7 bj-pr2eq 33525 . . . . 5 (⦅𝐴⦆ = ({∅} × tag 𝐴) → pr2𝐴⦆ = pr2 ({∅} × tag 𝐴))
86, 7ax-mp 5 . . . 4 pr2𝐴⦆ = pr2 ({∅} × tag 𝐴)
9 bj-pr2val 33527 . . . 4 pr2 ({∅} × tag 𝐴) = if(∅ = 1o, 𝐴, ∅)
10 1n0 7847 . . . . . 6 1o ≠ ∅
1110nesymi 3056 . . . . 5 ¬ ∅ = 1o
1211iffalsei 4318 . . . 4 if(∅ = 1o, 𝐴, ∅) = ∅
138, 9, 123eqtri 2853 . . 3 pr2𝐴⦆ = ∅
14 bj-pr2val 33527 . . . 4 pr2 ({1o} × tag 𝐵) = if(1o = 1o, 𝐵, ∅)
15 eqid 2825 . . . . 5 1o = 1o
1615iftruei 4315 . . . 4 if(1o = 1o, 𝐵, ∅) = 𝐵
1714, 16eqtri 2849 . . 3 pr2 ({1o} × tag 𝐵) = 𝐵
1813, 17uneq12i 3994 . 2 (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) = (∅ ∪ 𝐵)
19 uncom 3986 . . 3 (∅ ∪ 𝐵) = (𝐵 ∪ ∅)
20 un0 4194 . . 3 (𝐵 ∪ ∅) = 𝐵
2119, 20eqtri 2849 . 2 (∅ ∪ 𝐵) = 𝐵
225, 18, 213eqtri 2853 1 pr2𝐴, 𝐵⦆ = 𝐵
 Colors of variables: wff setvar class Syntax hints:   = wceq 1656   ∪ cun 3796  ∅c0 4146  ifcif 4308  {csn 4399   × cxp 5344  1oc1o 7824  tag bj-ctag 33483  ⦅bj-c1upl 33506  ⦅bj-c2uple 33519  pr2 bj-cpr2 33523 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129  ax-un 7214 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-tr 4978  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-ord 5970  df-on 5971  df-suc 5973  df-1o 7831  df-bj-sngl 33475  df-bj-tag 33484  df-bj-proj 33500  df-bj-1upl 33507  df-bj-2upl 33520  df-bj-pr2 33524 This theorem is referenced by:  bj-2uplth  33530  bj-2uplex  33531
 Copyright terms: Public domain W3C validator