Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr22val Structured version   Visualization version   GIF version

Theorem bj-pr22val 37014
Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr22val pr2𝐴, 𝐵⦆ = 𝐵

Proof of Theorem bj-pr22val
StepHypRef Expression
1 df-bj-2upl 37006 . . . 4 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-pr2eq 37011 . . . 4 (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr2𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
31, 2ax-mp 5 . . 3 pr2𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
4 bj-pr2un 37012 . . 3 pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵))
53, 4eqtri 2753 . 2 pr2𝐴, 𝐵⦆ = (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵))
6 df-bj-1upl 36993 . . . . 5 𝐴⦆ = ({∅} × tag 𝐴)
7 bj-pr2eq 37011 . . . . 5 (⦅𝐴⦆ = ({∅} × tag 𝐴) → pr2𝐴⦆ = pr2 ({∅} × tag 𝐴))
86, 7ax-mp 5 . . . 4 pr2𝐴⦆ = pr2 ({∅} × tag 𝐴)
9 bj-pr2val 37013 . . . 4 pr2 ({∅} × tag 𝐴) = if(∅ = 1o, 𝐴, ∅)
10 1n0 8455 . . . . . 6 1o ≠ ∅
1110nesymi 2983 . . . . 5 ¬ ∅ = 1o
1211iffalsei 4501 . . . 4 if(∅ = 1o, 𝐴, ∅) = ∅
138, 9, 123eqtri 2757 . . 3 pr2𝐴⦆ = ∅
14 bj-pr2val 37013 . . . 4 pr2 ({1o} × tag 𝐵) = if(1o = 1o, 𝐵, ∅)
15 eqid 2730 . . . . 5 1o = 1o
1615iftruei 4498 . . . 4 if(1o = 1o, 𝐵, ∅) = 𝐵
1714, 16eqtri 2753 . . 3 pr2 ({1o} × tag 𝐵) = 𝐵
1813, 17uneq12i 4132 . 2 (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) = (∅ ∪ 𝐵)
19 0un 4362 . 2 (∅ ∪ 𝐵) = 𝐵
205, 18, 193eqtri 2757 1 pr2𝐴, 𝐵⦆ = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3915  c0 4299  ifcif 4491  {csn 4592   × cxp 5639  1oc1o 8430  tag bj-ctag 36969  bj-c1upl 36992  bj-c2uple 37005  pr2 bj-cpr2 37009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-1o 8437  df-bj-sngl 36961  df-bj-tag 36970  df-bj-proj 36986  df-bj-1upl 36993  df-bj-2upl 37006  df-bj-pr2 37010
This theorem is referenced by:  bj-2uplth  37016  bj-2uplex  37017
  Copyright terms: Public domain W3C validator