Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr22val Structured version   Visualization version   GIF version

Theorem bj-pr22val 35136
Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr22val pr2𝐴, 𝐵⦆ = 𝐵

Proof of Theorem bj-pr22val
StepHypRef Expression
1 df-bj-2upl 35128 . . . 4 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-pr2eq 35133 . . . 4 (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr2𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
31, 2ax-mp 5 . . 3 pr2𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
4 bj-pr2un 35134 . . 3 pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵))
53, 4eqtri 2766 . 2 pr2𝐴, 𝐵⦆ = (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵))
6 df-bj-1upl 35115 . . . . 5 𝐴⦆ = ({∅} × tag 𝐴)
7 bj-pr2eq 35133 . . . . 5 (⦅𝐴⦆ = ({∅} × tag 𝐴) → pr2𝐴⦆ = pr2 ({∅} × tag 𝐴))
86, 7ax-mp 5 . . . 4 pr2𝐴⦆ = pr2 ({∅} × tag 𝐴)
9 bj-pr2val 35135 . . . 4 pr2 ({∅} × tag 𝐴) = if(∅ = 1o, 𝐴, ∅)
10 1n0 8286 . . . . . 6 1o ≠ ∅
1110nesymi 3000 . . . . 5 ¬ ∅ = 1o
1211iffalsei 4466 . . . 4 if(∅ = 1o, 𝐴, ∅) = ∅
138, 9, 123eqtri 2770 . . 3 pr2𝐴⦆ = ∅
14 bj-pr2val 35135 . . . 4 pr2 ({1o} × tag 𝐵) = if(1o = 1o, 𝐵, ∅)
15 eqid 2738 . . . . 5 1o = 1o
1615iftruei 4463 . . . 4 if(1o = 1o, 𝐵, ∅) = 𝐵
1714, 16eqtri 2766 . . 3 pr2 ({1o} × tag 𝐵) = 𝐵
1813, 17uneq12i 4091 . 2 (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) = (∅ ∪ 𝐵)
19 0un 4323 . 2 (∅ ∪ 𝐵) = 𝐵
205, 18, 193eqtri 2770 1 pr2𝐴, 𝐵⦆ = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3881  c0 4253  ifcif 4456  {csn 4558   × cxp 5578  1oc1o 8260  tag bj-ctag 35091  bj-c1upl 35114  bj-c2uple 35127  pr2 bj-cpr2 35131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-1o 8267  df-bj-sngl 35083  df-bj-tag 35092  df-bj-proj 35108  df-bj-1upl 35115  df-bj-2upl 35128  df-bj-pr2 35132
This theorem is referenced by:  bj-2uplth  35138  bj-2uplex  35139
  Copyright terms: Public domain W3C validator