Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr22val | Structured version Visualization version GIF version |
Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-pr22val | ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-2upl 34721 | . . . 4 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
2 | bj-pr2eq 34726 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
4 | bj-pr2un 34727 | . . 3 ⊢ pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) | |
5 | 3, 4 | eqtri 2782 | . 2 ⊢ pr2 ⦅𝐴, 𝐵⦆ = (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) |
6 | df-bj-1upl 34708 | . . . . 5 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
7 | bj-pr2eq 34726 | . . . . 5 ⊢ (⦅𝐴⦆ = ({∅} × tag 𝐴) → pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴)) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴) |
9 | bj-pr2val 34728 | . . . 4 ⊢ pr2 ({∅} × tag 𝐴) = if(∅ = 1o, 𝐴, ∅) | |
10 | 1n0 8130 | . . . . . 6 ⊢ 1o ≠ ∅ | |
11 | 10 | nesymi 3009 | . . . . 5 ⊢ ¬ ∅ = 1o |
12 | 11 | iffalsei 4431 | . . . 4 ⊢ if(∅ = 1o, 𝐴, ∅) = ∅ |
13 | 8, 9, 12 | 3eqtri 2786 | . . 3 ⊢ pr2 ⦅𝐴⦆ = ∅ |
14 | bj-pr2val 34728 | . . . 4 ⊢ pr2 ({1o} × tag 𝐵) = if(1o = 1o, 𝐵, ∅) | |
15 | eqid 2759 | . . . . 5 ⊢ 1o = 1o | |
16 | 15 | iftruei 4428 | . . . 4 ⊢ if(1o = 1o, 𝐵, ∅) = 𝐵 |
17 | 14, 16 | eqtri 2782 | . . 3 ⊢ pr2 ({1o} × tag 𝐵) = 𝐵 |
18 | 13, 17 | uneq12i 4067 | . 2 ⊢ (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) = (∅ ∪ 𝐵) |
19 | 0un 4289 | . 2 ⊢ (∅ ∪ 𝐵) = 𝐵 | |
20 | 5, 18, 19 | 3eqtri 2786 | 1 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3857 ∅c0 4226 ifcif 4421 {csn 4523 × cxp 5523 1oc1o 8106 tag bj-ctag 34684 ⦅bj-c1upl 34707 ⦅bj-c2uple 34720 pr2 bj-cpr2 34724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-tr 5140 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ord 6173 df-on 6174 df-suc 6176 df-1o 8113 df-bj-sngl 34676 df-bj-tag 34685 df-bj-proj 34701 df-bj-1upl 34708 df-bj-2upl 34721 df-bj-pr2 34725 |
This theorem is referenced by: bj-2uplth 34731 bj-2uplex 34732 |
Copyright terms: Public domain | W3C validator |