Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr22val Structured version   Visualization version   GIF version

Theorem bj-pr22val 37007
Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr22val pr2𝐴, 𝐵⦆ = 𝐵

Proof of Theorem bj-pr22val
StepHypRef Expression
1 df-bj-2upl 36999 . . . 4 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-pr2eq 37004 . . . 4 (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr2𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
31, 2ax-mp 5 . . 3 pr2𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
4 bj-pr2un 37005 . . 3 pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵))
53, 4eqtri 2752 . 2 pr2𝐴, 𝐵⦆ = (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵))
6 df-bj-1upl 36986 . . . . 5 𝐴⦆ = ({∅} × tag 𝐴)
7 bj-pr2eq 37004 . . . . 5 (⦅𝐴⦆ = ({∅} × tag 𝐴) → pr2𝐴⦆ = pr2 ({∅} × tag 𝐴))
86, 7ax-mp 5 . . . 4 pr2𝐴⦆ = pr2 ({∅} × tag 𝐴)
9 bj-pr2val 37006 . . . 4 pr2 ({∅} × tag 𝐴) = if(∅ = 1o, 𝐴, ∅)
10 1n0 8452 . . . . . 6 1o ≠ ∅
1110nesymi 2982 . . . . 5 ¬ ∅ = 1o
1211iffalsei 4498 . . . 4 if(∅ = 1o, 𝐴, ∅) = ∅
138, 9, 123eqtri 2756 . . 3 pr2𝐴⦆ = ∅
14 bj-pr2val 37006 . . . 4 pr2 ({1o} × tag 𝐵) = if(1o = 1o, 𝐵, ∅)
15 eqid 2729 . . . . 5 1o = 1o
1615iftruei 4495 . . . 4 if(1o = 1o, 𝐵, ∅) = 𝐵
1714, 16eqtri 2752 . . 3 pr2 ({1o} × tag 𝐵) = 𝐵
1813, 17uneq12i 4129 . 2 (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) = (∅ ∪ 𝐵)
19 0un 4359 . 2 (∅ ∪ 𝐵) = 𝐵
205, 18, 193eqtri 2756 1 pr2𝐴, 𝐵⦆ = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3912  c0 4296  ifcif 4488  {csn 4589   × cxp 5636  1oc1o 8427  tag bj-ctag 36962  bj-c1upl 36985  bj-c2uple 36998  pr2 bj-cpr2 37002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-1o 8434  df-bj-sngl 36954  df-bj-tag 36963  df-bj-proj 36979  df-bj-1upl 36986  df-bj-2upl 36999  df-bj-pr2 37003
This theorem is referenced by:  bj-2uplth  37009  bj-2uplex  37010
  Copyright terms: Public domain W3C validator