Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr22val Structured version   Visualization version   GIF version

Theorem bj-pr22val 36555
Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr22val pr2𝐴, 𝐵⦆ = 𝐵

Proof of Theorem bj-pr22val
StepHypRef Expression
1 df-bj-2upl 36547 . . . 4 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-pr2eq 36552 . . . 4 (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr2𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
31, 2ax-mp 5 . . 3 pr2𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
4 bj-pr2un 36553 . . 3 pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵))
53, 4eqtri 2753 . 2 pr2𝐴, 𝐵⦆ = (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵))
6 df-bj-1upl 36534 . . . . 5 𝐴⦆ = ({∅} × tag 𝐴)
7 bj-pr2eq 36552 . . . . 5 (⦅𝐴⦆ = ({∅} × tag 𝐴) → pr2𝐴⦆ = pr2 ({∅} × tag 𝐴))
86, 7ax-mp 5 . . . 4 pr2𝐴⦆ = pr2 ({∅} × tag 𝐴)
9 bj-pr2val 36554 . . . 4 pr2 ({∅} × tag 𝐴) = if(∅ = 1o, 𝐴, ∅)
10 1n0 8507 . . . . . 6 1o ≠ ∅
1110nesymi 2988 . . . . 5 ¬ ∅ = 1o
1211iffalsei 4534 . . . 4 if(∅ = 1o, 𝐴, ∅) = ∅
138, 9, 123eqtri 2757 . . 3 pr2𝐴⦆ = ∅
14 bj-pr2val 36554 . . . 4 pr2 ({1o} × tag 𝐵) = if(1o = 1o, 𝐵, ∅)
15 eqid 2725 . . . . 5 1o = 1o
1615iftruei 4531 . . . 4 if(1o = 1o, 𝐵, ∅) = 𝐵
1714, 16eqtri 2753 . . 3 pr2 ({1o} × tag 𝐵) = 𝐵
1813, 17uneq12i 4154 . 2 (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) = (∅ ∪ 𝐵)
19 0un 4388 . 2 (∅ ∪ 𝐵) = 𝐵
205, 18, 193eqtri 2757 1 pr2𝐴, 𝐵⦆ = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cun 3937  c0 4318  ifcif 4524  {csn 4624   × cxp 5670  1oc1o 8478  tag bj-ctag 36510  bj-c1upl 36533  bj-c2uple 36546  pr2 bj-cpr2 36550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5144  df-opab 5206  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-suc 6370  df-1o 8485  df-bj-sngl 36502  df-bj-tag 36511  df-bj-proj 36527  df-bj-1upl 36534  df-bj-2upl 36547  df-bj-pr2 36551
This theorem is referenced by:  bj-2uplth  36557  bj-2uplex  36558
  Copyright terms: Public domain W3C validator