Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr22val | Structured version Visualization version GIF version |
Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-pr22val | ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-2upl 35201 | . . . 4 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
2 | bj-pr2eq 35206 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
4 | bj-pr2un 35207 | . . 3 ⊢ pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) | |
5 | 3, 4 | eqtri 2766 | . 2 ⊢ pr2 ⦅𝐴, 𝐵⦆ = (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) |
6 | df-bj-1upl 35188 | . . . . 5 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
7 | bj-pr2eq 35206 | . . . . 5 ⊢ (⦅𝐴⦆ = ({∅} × tag 𝐴) → pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴)) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴) |
9 | bj-pr2val 35208 | . . . 4 ⊢ pr2 ({∅} × tag 𝐴) = if(∅ = 1o, 𝐴, ∅) | |
10 | 1n0 8318 | . . . . . 6 ⊢ 1o ≠ ∅ | |
11 | 10 | nesymi 3001 | . . . . 5 ⊢ ¬ ∅ = 1o |
12 | 11 | iffalsei 4469 | . . . 4 ⊢ if(∅ = 1o, 𝐴, ∅) = ∅ |
13 | 8, 9, 12 | 3eqtri 2770 | . . 3 ⊢ pr2 ⦅𝐴⦆ = ∅ |
14 | bj-pr2val 35208 | . . . 4 ⊢ pr2 ({1o} × tag 𝐵) = if(1o = 1o, 𝐵, ∅) | |
15 | eqid 2738 | . . . . 5 ⊢ 1o = 1o | |
16 | 15 | iftruei 4466 | . . . 4 ⊢ if(1o = 1o, 𝐵, ∅) = 𝐵 |
17 | 14, 16 | eqtri 2766 | . . 3 ⊢ pr2 ({1o} × tag 𝐵) = 𝐵 |
18 | 13, 17 | uneq12i 4095 | . 2 ⊢ (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) = (∅ ∪ 𝐵) |
19 | 0un 4326 | . 2 ⊢ (∅ ∪ 𝐵) = 𝐵 | |
20 | 5, 18, 19 | 3eqtri 2770 | 1 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 ∅c0 4256 ifcif 4459 {csn 4561 × cxp 5587 1oc1o 8290 tag bj-ctag 35164 ⦅bj-c1upl 35187 ⦅bj-c2uple 35200 pr2 bj-cpr2 35204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-suc 6272 df-1o 8297 df-bj-sngl 35156 df-bj-tag 35165 df-bj-proj 35181 df-bj-1upl 35188 df-bj-2upl 35201 df-bj-pr2 35205 |
This theorem is referenced by: bj-2uplth 35211 bj-2uplex 35212 |
Copyright terms: Public domain | W3C validator |