![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr22val | Structured version Visualization version GIF version |
Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-pr22val | ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-2upl 36977 | . . . 4 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
2 | bj-pr2eq 36982 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
4 | bj-pr2un 36983 | . . 3 ⊢ pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) | |
5 | 3, 4 | eqtri 2768 | . 2 ⊢ pr2 ⦅𝐴, 𝐵⦆ = (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) |
6 | df-bj-1upl 36964 | . . . . 5 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
7 | bj-pr2eq 36982 | . . . . 5 ⊢ (⦅𝐴⦆ = ({∅} × tag 𝐴) → pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴)) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴) |
9 | bj-pr2val 36984 | . . . 4 ⊢ pr2 ({∅} × tag 𝐴) = if(∅ = 1o, 𝐴, ∅) | |
10 | 1n0 8544 | . . . . . 6 ⊢ 1o ≠ ∅ | |
11 | 10 | nesymi 3004 | . . . . 5 ⊢ ¬ ∅ = 1o |
12 | 11 | iffalsei 4558 | . . . 4 ⊢ if(∅ = 1o, 𝐴, ∅) = ∅ |
13 | 8, 9, 12 | 3eqtri 2772 | . . 3 ⊢ pr2 ⦅𝐴⦆ = ∅ |
14 | bj-pr2val 36984 | . . . 4 ⊢ pr2 ({1o} × tag 𝐵) = if(1o = 1o, 𝐵, ∅) | |
15 | eqid 2740 | . . . . 5 ⊢ 1o = 1o | |
16 | 15 | iftruei 4555 | . . . 4 ⊢ if(1o = 1o, 𝐵, ∅) = 𝐵 |
17 | 14, 16 | eqtri 2768 | . . 3 ⊢ pr2 ({1o} × tag 𝐵) = 𝐵 |
18 | 13, 17 | uneq12i 4189 | . 2 ⊢ (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) = (∅ ∪ 𝐵) |
19 | 0un 4419 | . 2 ⊢ (∅ ∪ 𝐵) = 𝐵 | |
20 | 5, 18, 19 | 3eqtri 2772 | 1 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 ∅c0 4352 ifcif 4548 {csn 4648 × cxp 5698 1oc1o 8515 tag bj-ctag 36940 ⦅bj-c1upl 36963 ⦅bj-c2uple 36976 pr2 bj-cpr2 36980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-1o 8522 df-bj-sngl 36932 df-bj-tag 36941 df-bj-proj 36957 df-bj-1upl 36964 df-bj-2upl 36977 df-bj-pr2 36981 |
This theorem is referenced by: bj-2uplth 36987 bj-2uplex 36988 |
Copyright terms: Public domain | W3C validator |