Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr22val Structured version   Visualization version   GIF version

Theorem bj-pr22val 34729
Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr22val pr2𝐴, 𝐵⦆ = 𝐵

Proof of Theorem bj-pr22val
StepHypRef Expression
1 df-bj-2upl 34721 . . . 4 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-pr2eq 34726 . . . 4 (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr2𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
31, 2ax-mp 5 . . 3 pr2𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
4 bj-pr2un 34727 . . 3 pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵))
53, 4eqtri 2782 . 2 pr2𝐴, 𝐵⦆ = (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵))
6 df-bj-1upl 34708 . . . . 5 𝐴⦆ = ({∅} × tag 𝐴)
7 bj-pr2eq 34726 . . . . 5 (⦅𝐴⦆ = ({∅} × tag 𝐴) → pr2𝐴⦆ = pr2 ({∅} × tag 𝐴))
86, 7ax-mp 5 . . . 4 pr2𝐴⦆ = pr2 ({∅} × tag 𝐴)
9 bj-pr2val 34728 . . . 4 pr2 ({∅} × tag 𝐴) = if(∅ = 1o, 𝐴, ∅)
10 1n0 8130 . . . . . 6 1o ≠ ∅
1110nesymi 3009 . . . . 5 ¬ ∅ = 1o
1211iffalsei 4431 . . . 4 if(∅ = 1o, 𝐴, ∅) = ∅
138, 9, 123eqtri 2786 . . 3 pr2𝐴⦆ = ∅
14 bj-pr2val 34728 . . . 4 pr2 ({1o} × tag 𝐵) = if(1o = 1o, 𝐵, ∅)
15 eqid 2759 . . . . 5 1o = 1o
1615iftruei 4428 . . . 4 if(1o = 1o, 𝐵, ∅) = 𝐵
1714, 16eqtri 2782 . . 3 pr2 ({1o} × tag 𝐵) = 𝐵
1813, 17uneq12i 4067 . 2 (pr2𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) = (∅ ∪ 𝐵)
19 0un 4289 . 2 (∅ ∪ 𝐵) = 𝐵
205, 18, 193eqtri 2786 1 pr2𝐴, 𝐵⦆ = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3857  c0 4226  ifcif 4421  {csn 4523   × cxp 5523  1oc1o 8106  tag bj-ctag 34684  bj-c1upl 34707  bj-c2uple 34720  pr2 bj-cpr2 34724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-tr 5140  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ord 6173  df-on 6174  df-suc 6176  df-1o 8113  df-bj-sngl 34676  df-bj-tag 34685  df-bj-proj 34701  df-bj-1upl 34708  df-bj-2upl 34721  df-bj-pr2 34725
This theorem is referenced by:  bj-2uplth  34731  bj-2uplex  34732
  Copyright terms: Public domain W3C validator