![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr22val | Structured version Visualization version GIF version |
Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-pr22val | ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-2upl 36547 | . . . 4 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
2 | bj-pr2eq 36552 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
4 | bj-pr2un 36553 | . . 3 ⊢ pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) | |
5 | 3, 4 | eqtri 2753 | . 2 ⊢ pr2 ⦅𝐴, 𝐵⦆ = (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) |
6 | df-bj-1upl 36534 | . . . . 5 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
7 | bj-pr2eq 36552 | . . . . 5 ⊢ (⦅𝐴⦆ = ({∅} × tag 𝐴) → pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴)) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴) |
9 | bj-pr2val 36554 | . . . 4 ⊢ pr2 ({∅} × tag 𝐴) = if(∅ = 1o, 𝐴, ∅) | |
10 | 1n0 8507 | . . . . . 6 ⊢ 1o ≠ ∅ | |
11 | 10 | nesymi 2988 | . . . . 5 ⊢ ¬ ∅ = 1o |
12 | 11 | iffalsei 4534 | . . . 4 ⊢ if(∅ = 1o, 𝐴, ∅) = ∅ |
13 | 8, 9, 12 | 3eqtri 2757 | . . 3 ⊢ pr2 ⦅𝐴⦆ = ∅ |
14 | bj-pr2val 36554 | . . . 4 ⊢ pr2 ({1o} × tag 𝐵) = if(1o = 1o, 𝐵, ∅) | |
15 | eqid 2725 | . . . . 5 ⊢ 1o = 1o | |
16 | 15 | iftruei 4531 | . . . 4 ⊢ if(1o = 1o, 𝐵, ∅) = 𝐵 |
17 | 14, 16 | eqtri 2753 | . . 3 ⊢ pr2 ({1o} × tag 𝐵) = 𝐵 |
18 | 13, 17 | uneq12i 4154 | . 2 ⊢ (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) = (∅ ∪ 𝐵) |
19 | 0un 4388 | . 2 ⊢ (∅ ∪ 𝐵) = 𝐵 | |
20 | 5, 18, 19 | 3eqtri 2757 | 1 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∪ cun 3937 ∅c0 4318 ifcif 4524 {csn 4624 × cxp 5670 1oc1o 8478 tag bj-ctag 36510 ⦅bj-c1upl 36533 ⦅bj-c2uple 36546 pr2 bj-cpr2 36550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5144 df-opab 5206 df-xp 5678 df-rel 5679 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-suc 6370 df-1o 8485 df-bj-sngl 36502 df-bj-tag 36511 df-bj-proj 36527 df-bj-1upl 36534 df-bj-2upl 36547 df-bj-pr2 36551 |
This theorem is referenced by: bj-2uplth 36557 bj-2uplex 36558 |
Copyright terms: Public domain | W3C validator |