| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr22val | Structured version Visualization version GIF version | ||
| Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-pr22val | ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-2upl 37053 | . . . 4 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 2 | bj-pr2eq 37058 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) → pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
| 4 | bj-pr2un 37059 | . . 3 ⊢ pr2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) = (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) | |
| 5 | 3, 4 | eqtri 2754 | . 2 ⊢ pr2 ⦅𝐴, 𝐵⦆ = (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) |
| 6 | df-bj-1upl 37040 | . . . . 5 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
| 7 | bj-pr2eq 37058 | . . . . 5 ⊢ (⦅𝐴⦆ = ({∅} × tag 𝐴) → pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴)) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴) |
| 9 | bj-pr2val 37060 | . . . 4 ⊢ pr2 ({∅} × tag 𝐴) = if(∅ = 1o, 𝐴, ∅) | |
| 10 | 1n0 8403 | . . . . . 6 ⊢ 1o ≠ ∅ | |
| 11 | 10 | nesymi 2985 | . . . . 5 ⊢ ¬ ∅ = 1o |
| 12 | 11 | iffalsei 4482 | . . . 4 ⊢ if(∅ = 1o, 𝐴, ∅) = ∅ |
| 13 | 8, 9, 12 | 3eqtri 2758 | . . 3 ⊢ pr2 ⦅𝐴⦆ = ∅ |
| 14 | bj-pr2val 37060 | . . . 4 ⊢ pr2 ({1o} × tag 𝐵) = if(1o = 1o, 𝐵, ∅) | |
| 15 | eqid 2731 | . . . . 5 ⊢ 1o = 1o | |
| 16 | 15 | iftruei 4479 | . . . 4 ⊢ if(1o = 1o, 𝐵, ∅) = 𝐵 |
| 17 | 14, 16 | eqtri 2754 | . . 3 ⊢ pr2 ({1o} × tag 𝐵) = 𝐵 |
| 18 | 13, 17 | uneq12i 4113 | . 2 ⊢ (pr2 ⦅𝐴⦆ ∪ pr2 ({1o} × tag 𝐵)) = (∅ ∪ 𝐵) |
| 19 | 0un 4343 | . 2 ⊢ (∅ ∪ 𝐵) = 𝐵 | |
| 20 | 5, 18, 19 | 3eqtri 2758 | 1 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 ∅c0 4280 ifcif 4472 {csn 4573 × cxp 5612 1oc1o 8378 tag bj-ctag 37016 ⦅bj-c1upl 37039 ⦅bj-c2uple 37052 pr2 bj-cpr2 37056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6312 df-1o 8385 df-bj-sngl 37008 df-bj-tag 37017 df-bj-proj 37033 df-bj-1upl 37040 df-bj-2upl 37053 df-bj-pr2 37057 |
| This theorem is referenced by: bj-2uplth 37063 bj-2uplex 37064 |
| Copyright terms: Public domain | W3C validator |