Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr2un Structured version   Visualization version   GIF version

Theorem bj-pr2un 35134
Description: The second projection preserves unions. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-pr2un pr2 (𝐴𝐵) = (pr2 𝐴 ∪ pr2 𝐵)

Proof of Theorem bj-pr2un
StepHypRef Expression
1 bj-projun 35111 . 2 (1o Proj (𝐴𝐵)) = ((1o Proj 𝐴) ∪ (1o Proj 𝐵))
2 df-bj-pr2 35132 . 2 pr2 (𝐴𝐵) = (1o Proj (𝐴𝐵))
3 df-bj-pr2 35132 . . 3 pr2 𝐴 = (1o Proj 𝐴)
4 df-bj-pr2 35132 . . 3 pr2 𝐵 = (1o Proj 𝐵)
53, 4uneq12i 4091 . 2 (pr2 𝐴 ∪ pr2 𝐵) = ((1o Proj 𝐴) ∪ (1o Proj 𝐵))
61, 2, 53eqtr4i 2776 1 pr2 (𝐴𝐵) = (pr2 𝐴 ∪ pr2 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3881  1oc1o 8260   Proj bj-cproj 35107  pr2 bj-cpr2 35131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-bj-proj 35108  df-bj-pr2 35132
This theorem is referenced by:  bj-pr22val  35136
  Copyright terms: Public domain W3C validator