![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr2un | Structured version Visualization version GIF version |
Description: The second projection preserves unions. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-pr2un | ⊢ pr2 (𝐴 ∪ 𝐵) = (pr2 𝐴 ∪ pr2 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-projun 36960 | . 2 ⊢ (1o Proj (𝐴 ∪ 𝐵)) = ((1o Proj 𝐴) ∪ (1o Proj 𝐵)) | |
2 | df-bj-pr2 36981 | . 2 ⊢ pr2 (𝐴 ∪ 𝐵) = (1o Proj (𝐴 ∪ 𝐵)) | |
3 | df-bj-pr2 36981 | . . 3 ⊢ pr2 𝐴 = (1o Proj 𝐴) | |
4 | df-bj-pr2 36981 | . . 3 ⊢ pr2 𝐵 = (1o Proj 𝐵) | |
5 | 3, 4 | uneq12i 4189 | . 2 ⊢ (pr2 𝐴 ∪ pr2 𝐵) = ((1o Proj 𝐴) ∪ (1o Proj 𝐵)) |
6 | 1, 2, 5 | 3eqtr4i 2778 | 1 ⊢ pr2 (𝐴 ∪ 𝐵) = (pr2 𝐴 ∪ pr2 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3974 1oc1o 8515 Proj bj-cproj 36956 pr2 bj-cpr2 36980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-bj-proj 36957 df-bj-pr2 36981 |
This theorem is referenced by: bj-pr22val 36985 |
Copyright terms: Public domain | W3C validator |