![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr2un | Structured version Visualization version GIF version |
Description: The second projection preserves unions. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-pr2un | ⊢ pr2 (𝐴 ∪ 𝐵) = (pr2 𝐴 ∪ pr2 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-projun 36331 | . 2 ⊢ (1o Proj (𝐴 ∪ 𝐵)) = ((1o Proj 𝐴) ∪ (1o Proj 𝐵)) | |
2 | df-bj-pr2 36352 | . 2 ⊢ pr2 (𝐴 ∪ 𝐵) = (1o Proj (𝐴 ∪ 𝐵)) | |
3 | df-bj-pr2 36352 | . . 3 ⊢ pr2 𝐴 = (1o Proj 𝐴) | |
4 | df-bj-pr2 36352 | . . 3 ⊢ pr2 𝐵 = (1o Proj 𝐵) | |
5 | 3, 4 | uneq12i 4153 | . 2 ⊢ (pr2 𝐴 ∪ pr2 𝐵) = ((1o Proj 𝐴) ∪ (1o Proj 𝐵)) |
6 | 1, 2, 5 | 3eqtr4i 2762 | 1 ⊢ pr2 (𝐴 ∪ 𝐵) = (pr2 𝐴 ∪ pr2 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∪ cun 3938 1oc1o 8454 Proj bj-cproj 36327 pr2 bj-cpr2 36351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-cnv 5674 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-bj-proj 36328 df-bj-pr2 36352 |
This theorem is referenced by: bj-pr22val 36356 |
Copyright terms: Public domain | W3C validator |