Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr2un Structured version   Visualization version   GIF version

Theorem bj-pr2un 37000
Description: The second projection preserves unions. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-pr2un pr2 (𝐴𝐵) = (pr2 𝐴 ∪ pr2 𝐵)

Proof of Theorem bj-pr2un
StepHypRef Expression
1 bj-projun 36977 . 2 (1o Proj (𝐴𝐵)) = ((1o Proj 𝐴) ∪ (1o Proj 𝐵))
2 df-bj-pr2 36998 . 2 pr2 (𝐴𝐵) = (1o Proj (𝐴𝐵))
3 df-bj-pr2 36998 . . 3 pr2 𝐴 = (1o Proj 𝐴)
4 df-bj-pr2 36998 . . 3 pr2 𝐵 = (1o Proj 𝐵)
53, 4uneq12i 4176 . 2 (pr2 𝐴 ∪ pr2 𝐵) = ((1o Proj 𝐴) ∪ (1o Proj 𝐵))
61, 2, 53eqtr4i 2773 1 pr2 (𝐴𝐵) = (pr2 𝐴 ∪ pr2 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3961  1oc1o 8498   Proj bj-cproj 36973  pr2 bj-cpr2 36997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-bj-proj 36974  df-bj-pr2 36998
This theorem is referenced by:  bj-pr22val  37002
  Copyright terms: Public domain W3C validator