| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr2un | Structured version Visualization version GIF version | ||
| Description: The second projection preserves unions. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-pr2un | ⊢ pr2 (𝐴 ∪ 𝐵) = (pr2 𝐴 ∪ pr2 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-projun 37038 | . 2 ⊢ (1o Proj (𝐴 ∪ 𝐵)) = ((1o Proj 𝐴) ∪ (1o Proj 𝐵)) | |
| 2 | df-bj-pr2 37059 | . 2 ⊢ pr2 (𝐴 ∪ 𝐵) = (1o Proj (𝐴 ∪ 𝐵)) | |
| 3 | df-bj-pr2 37059 | . . 3 ⊢ pr2 𝐴 = (1o Proj 𝐴) | |
| 4 | df-bj-pr2 37059 | . . 3 ⊢ pr2 𝐵 = (1o Proj 𝐵) | |
| 5 | 3, 4 | uneq12i 4113 | . 2 ⊢ (pr2 𝐴 ∪ pr2 𝐵) = ((1o Proj 𝐴) ∪ (1o Proj 𝐵)) |
| 6 | 1, 2, 5 | 3eqtr4i 2764 | 1 ⊢ pr2 (𝐴 ∪ 𝐵) = (pr2 𝐴 ∪ pr2 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 1oc1o 8378 Proj bj-cproj 37034 pr2 bj-cpr2 37058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-bj-proj 37035 df-bj-pr2 37059 |
| This theorem is referenced by: bj-pr22val 37063 |
| Copyright terms: Public domain | W3C validator |