Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr2un Structured version   Visualization version   GIF version

Theorem bj-pr2un 37001
Description: The second projection preserves unions. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-pr2un pr2 (𝐴𝐵) = (pr2 𝐴 ∪ pr2 𝐵)

Proof of Theorem bj-pr2un
StepHypRef Expression
1 bj-projun 36978 . 2 (1o Proj (𝐴𝐵)) = ((1o Proj 𝐴) ∪ (1o Proj 𝐵))
2 df-bj-pr2 36999 . 2 pr2 (𝐴𝐵) = (1o Proj (𝐴𝐵))
3 df-bj-pr2 36999 . . 3 pr2 𝐴 = (1o Proj 𝐴)
4 df-bj-pr2 36999 . . 3 pr2 𝐵 = (1o Proj 𝐵)
53, 4uneq12i 4117 . 2 (pr2 𝐴 ∪ pr2 𝐵) = ((1o Proj 𝐴) ∪ (1o Proj 𝐵))
61, 2, 53eqtr4i 2762 1 pr2 (𝐴𝐵) = (pr2 𝐴 ∪ pr2 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3901  1oc1o 8381   Proj bj-cproj 36974  pr2 bj-cpr2 36998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-bj-proj 36975  df-bj-pr2 36999
This theorem is referenced by:  bj-pr22val  37003
  Copyright terms: Public domain W3C validator