| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-projeq2 | Structured version Visualization version GIF version | ||
| Description: Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-projeq2 | ⊢ (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | bj-projeq 36977 | . 2 ⊢ (𝐴 = 𝐴 → (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Proj bj-cproj 36975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-xp 5652 df-cnv 5654 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-bj-proj 36976 |
| This theorem is referenced by: bj-pr1eq 36987 bj-pr2eq 37001 |
| Copyright terms: Public domain | W3C validator |