Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projeq2 Structured version   Visualization version   GIF version

Theorem bj-projeq2 34828
Description: Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projeq2 (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶))

Proof of Theorem bj-projeq2
StepHypRef Expression
1 eqid 2738 . 2 𝐴 = 𝐴
2 bj-projeq 34827 . 2 (𝐴 = 𝐴 → (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶)))
31, 2ax-mp 5 1 (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542   Proj bj-cproj 34825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-rab 3062  df-v 3400  df-un 3848  df-in 3850  df-ss 3860  df-sn 4517  df-pr 4519  df-op 4523  df-br 5031  df-opab 5093  df-xp 5531  df-cnv 5533  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-bj-proj 34826
This theorem is referenced by:  bj-pr1eq  34837  bj-pr2eq  34851
  Copyright terms: Public domain W3C validator