Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projeq2 Structured version   Visualization version   GIF version

Theorem bj-projeq2 35110
Description: Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projeq2 (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶))

Proof of Theorem bj-projeq2
StepHypRef Expression
1 eqid 2738 . 2 𝐴 = 𝐴
2 bj-projeq 35109 . 2 (𝐴 = 𝐴 → (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶)))
31, 2ax-mp 5 1 (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   Proj bj-cproj 35107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-bj-proj 35108
This theorem is referenced by:  bj-pr1eq  35119  bj-pr2eq  35133
  Copyright terms: Public domain W3C validator