| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-projeq2 | Structured version Visualization version GIF version | ||
| Description: Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-projeq2 | ⊢ (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | bj-projeq 36934 | . 2 ⊢ (𝐴 = 𝐴 → (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵 = 𝐶 → (𝐴 Proj 𝐵) = (𝐴 Proj 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 Proj bj-cproj 36932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-xp 5673 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-bj-proj 36933 |
| This theorem is referenced by: bj-pr1eq 36944 bj-pr2eq 36958 |
| Copyright terms: Public domain | W3C validator |