Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr1eq Structured version   Visualization version   GIF version

Theorem bj-pr1eq 36990
Description: Substitution property for pr1. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-pr1eq (𝐴 = 𝐵 → pr1 𝐴 = pr1 𝐵)

Proof of Theorem bj-pr1eq
StepHypRef Expression
1 bj-projeq2 36981 . 2 (𝐴 = 𝐵 → (∅ Proj 𝐴) = (∅ Proj 𝐵))
2 df-bj-pr1 36989 . 2 pr1 𝐴 = (∅ Proj 𝐴)
3 df-bj-pr1 36989 . 2 pr1 𝐵 = (∅ Proj 𝐵)
41, 2, 33eqtr4g 2789 1 (𝐴 = 𝐵 → pr1 𝐴 = pr1 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  c0 4296   Proj bj-cproj 36978  pr1 bj-cpr1 36988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-bj-proj 36979  df-bj-pr1 36989
This theorem is referenced by:  bj-pr11val  36993  bj-1uplth  36995  bj-pr21val  37001  bj-2uplth  37009
  Copyright terms: Public domain W3C validator