Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projun Structured version   Visualization version   GIF version

Theorem bj-projun 35163
Description: The class projection on a given component preserves unions. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projun (𝐴 Proj (𝐵𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶))

Proof of Theorem bj-projun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bj-proj 35160 . . . . 5 (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})}
21abeq2i 2876 . . . 4 (𝑥 ∈ (𝐴 Proj 𝐵) ↔ {𝑥} ∈ (𝐵 “ {𝐴}))
3 df-bj-proj 35160 . . . . 5 (𝐴 Proj 𝐶) = {𝑥 ∣ {𝑥} ∈ (𝐶 “ {𝐴})}
43abeq2i 2876 . . . 4 (𝑥 ∈ (𝐴 Proj 𝐶) ↔ {𝑥} ∈ (𝐶 “ {𝐴}))
52, 4orbi12i 911 . . 3 ((𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴})))
6 elun 4087 . . 3 (𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) ↔ (𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶)))
7 df-bj-proj 35160 . . . . 5 (𝐴 Proj (𝐵𝐶)) = {𝑥 ∣ {𝑥} ∈ ((𝐵𝐶) “ {𝐴})}
87abeq2i 2876 . . . 4 (𝑥 ∈ (𝐴 Proj (𝐵𝐶)) ↔ {𝑥} ∈ ((𝐵𝐶) “ {𝐴}))
9 imaundir 6051 . . . . 5 ((𝐵𝐶) “ {𝐴}) = ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴}))
109eleq2i 2831 . . . 4 ({𝑥} ∈ ((𝐵𝐶) “ {𝐴}) ↔ {𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})))
11 elun 4087 . . . 4 ({𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴})))
128, 10, 113bitri 296 . . 3 (𝑥 ∈ (𝐴 Proj (𝐵𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴})))
135, 6, 123bitr4ri 303 . 2 (𝑥 ∈ (𝐴 Proj (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)))
1413eqriv 2736 1 (𝐴 Proj (𝐵𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wo 843   = wceq 1541  wcel 2109  cun 3889  {csn 4566  cima 5591   Proj bj-cproj 35159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-bj-proj 35160
This theorem is referenced by:  bj-pr1un  35172  bj-pr2un  35186
  Copyright terms: Public domain W3C validator