Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projun Structured version   Visualization version   GIF version

Theorem bj-projun 36996
Description: The class projection on a given component preserves unions. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projun (𝐴 Proj (𝐵𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶))

Proof of Theorem bj-projun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bj-proj 36993 . . . . 5 (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})}
21eqabri 2884 . . . 4 (𝑥 ∈ (𝐴 Proj 𝐵) ↔ {𝑥} ∈ (𝐵 “ {𝐴}))
3 df-bj-proj 36993 . . . . 5 (𝐴 Proj 𝐶) = {𝑥 ∣ {𝑥} ∈ (𝐶 “ {𝐴})}
43eqabri 2884 . . . 4 (𝑥 ∈ (𝐴 Proj 𝐶) ↔ {𝑥} ∈ (𝐶 “ {𝐴}))
52, 4orbi12i 914 . . 3 ((𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴})))
6 elun 4152 . . 3 (𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) ↔ (𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶)))
7 df-bj-proj 36993 . . . . 5 (𝐴 Proj (𝐵𝐶)) = {𝑥 ∣ {𝑥} ∈ ((𝐵𝐶) “ {𝐴})}
87eqabri 2884 . . . 4 (𝑥 ∈ (𝐴 Proj (𝐵𝐶)) ↔ {𝑥} ∈ ((𝐵𝐶) “ {𝐴}))
9 imaundir 6169 . . . . 5 ((𝐵𝐶) “ {𝐴}) = ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴}))
109eleq2i 2832 . . . 4 ({𝑥} ∈ ((𝐵𝐶) “ {𝐴}) ↔ {𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})))
11 elun 4152 . . . 4 ({𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴})))
128, 10, 113bitri 297 . . 3 (𝑥 ∈ (𝐴 Proj (𝐵𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴})))
135, 6, 123bitr4ri 304 . 2 (𝑥 ∈ (𝐴 Proj (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)))
1413eqriv 2733 1 (𝐴 Proj (𝐵𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1539  wcel 2107  cun 3948  {csn 4625  cima 5687   Proj bj-cproj 36992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-bj-proj 36993
This theorem is referenced by:  bj-pr1un  37005  bj-pr2un  37019
  Copyright terms: Public domain W3C validator