Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-projun | Structured version Visualization version GIF version |
Description: The class projection on a given component preserves unions. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-projun | ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-proj 35160 | . . . . 5 ⊢ (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} | |
2 | 1 | abeq2i 2876 | . . . 4 ⊢ (𝑥 ∈ (𝐴 Proj 𝐵) ↔ {𝑥} ∈ (𝐵 “ {𝐴})) |
3 | df-bj-proj 35160 | . . . . 5 ⊢ (𝐴 Proj 𝐶) = {𝑥 ∣ {𝑥} ∈ (𝐶 “ {𝐴})} | |
4 | 3 | abeq2i 2876 | . . . 4 ⊢ (𝑥 ∈ (𝐴 Proj 𝐶) ↔ {𝑥} ∈ (𝐶 “ {𝐴})) |
5 | 2, 4 | orbi12i 911 | . . 3 ⊢ ((𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴}))) |
6 | elun 4087 | . . 3 ⊢ (𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) ↔ (𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶))) | |
7 | df-bj-proj 35160 | . . . . 5 ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = {𝑥 ∣ {𝑥} ∈ ((𝐵 ∪ 𝐶) “ {𝐴})} | |
8 | 7 | abeq2i 2876 | . . . 4 ⊢ (𝑥 ∈ (𝐴 Proj (𝐵 ∪ 𝐶)) ↔ {𝑥} ∈ ((𝐵 ∪ 𝐶) “ {𝐴})) |
9 | imaundir 6051 | . . . . 5 ⊢ ((𝐵 ∪ 𝐶) “ {𝐴}) = ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})) | |
10 | 9 | eleq2i 2831 | . . . 4 ⊢ ({𝑥} ∈ ((𝐵 ∪ 𝐶) “ {𝐴}) ↔ {𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴}))) |
11 | elun 4087 | . . . 4 ⊢ ({𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴}))) | |
12 | 8, 10, 11 | 3bitri 296 | . . 3 ⊢ (𝑥 ∈ (𝐴 Proj (𝐵 ∪ 𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴}))) |
13 | 5, 6, 12 | 3bitr4ri 303 | . 2 ⊢ (𝑥 ∈ (𝐴 Proj (𝐵 ∪ 𝐶)) ↔ 𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶))) |
14 | 13 | eqriv 2736 | 1 ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 843 = wceq 1541 ∈ wcel 2109 ∪ cun 3889 {csn 4566 “ cima 5591 Proj bj-cproj 35159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-bj-proj 35160 |
This theorem is referenced by: bj-pr1un 35172 bj-pr2un 35186 |
Copyright terms: Public domain | W3C validator |