Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-projun | Structured version Visualization version GIF version |
Description: The class projection on a given component preserves unions. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-projun | ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-proj 35229 | . . . . 5 ⊢ (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} | |
2 | 1 | abeq2i 2873 | . . . 4 ⊢ (𝑥 ∈ (𝐴 Proj 𝐵) ↔ {𝑥} ∈ (𝐵 “ {𝐴})) |
3 | df-bj-proj 35229 | . . . . 5 ⊢ (𝐴 Proj 𝐶) = {𝑥 ∣ {𝑥} ∈ (𝐶 “ {𝐴})} | |
4 | 3 | abeq2i 2873 | . . . 4 ⊢ (𝑥 ∈ (𝐴 Proj 𝐶) ↔ {𝑥} ∈ (𝐶 “ {𝐴})) |
5 | 2, 4 | orbi12i 913 | . . 3 ⊢ ((𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴}))) |
6 | elun 4089 | . . 3 ⊢ (𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) ↔ (𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶))) | |
7 | df-bj-proj 35229 | . . . . 5 ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = {𝑥 ∣ {𝑥} ∈ ((𝐵 ∪ 𝐶) “ {𝐴})} | |
8 | 7 | abeq2i 2873 | . . . 4 ⊢ (𝑥 ∈ (𝐴 Proj (𝐵 ∪ 𝐶)) ↔ {𝑥} ∈ ((𝐵 ∪ 𝐶) “ {𝐴})) |
9 | imaundir 6069 | . . . . 5 ⊢ ((𝐵 ∪ 𝐶) “ {𝐴}) = ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})) | |
10 | 9 | eleq2i 2828 | . . . 4 ⊢ ({𝑥} ∈ ((𝐵 ∪ 𝐶) “ {𝐴}) ↔ {𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴}))) |
11 | elun 4089 | . . . 4 ⊢ ({𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴}))) | |
12 | 8, 10, 11 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ (𝐴 Proj (𝐵 ∪ 𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴}))) |
13 | 5, 6, 12 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ (𝐴 Proj (𝐵 ∪ 𝐶)) ↔ 𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶))) |
14 | 13 | eqriv 2733 | 1 ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 845 = wceq 1539 ∈ wcel 2104 ∪ cun 3890 {csn 4565 “ cima 5603 Proj bj-cproj 35228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-bj-proj 35229 |
This theorem is referenced by: bj-pr1un 35241 bj-pr2un 35255 |
Copyright terms: Public domain | W3C validator |