| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-projun | Structured version Visualization version GIF version | ||
| Description: The class projection on a given component preserves unions. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-projun | ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-proj 37056 | . . . . 5 ⊢ (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} | |
| 2 | 1 | eqabri 2875 | . . . 4 ⊢ (𝑥 ∈ (𝐴 Proj 𝐵) ↔ {𝑥} ∈ (𝐵 “ {𝐴})) |
| 3 | df-bj-proj 37056 | . . . . 5 ⊢ (𝐴 Proj 𝐶) = {𝑥 ∣ {𝑥} ∈ (𝐶 “ {𝐴})} | |
| 4 | 3 | eqabri 2875 | . . . 4 ⊢ (𝑥 ∈ (𝐴 Proj 𝐶) ↔ {𝑥} ∈ (𝐶 “ {𝐴})) |
| 5 | 2, 4 | orbi12i 914 | . . 3 ⊢ ((𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴}))) |
| 6 | elun 4102 | . . 3 ⊢ (𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) ↔ (𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶))) | |
| 7 | df-bj-proj 37056 | . . . . 5 ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = {𝑥 ∣ {𝑥} ∈ ((𝐵 ∪ 𝐶) “ {𝐴})} | |
| 8 | 7 | eqabri 2875 | . . . 4 ⊢ (𝑥 ∈ (𝐴 Proj (𝐵 ∪ 𝐶)) ↔ {𝑥} ∈ ((𝐵 ∪ 𝐶) “ {𝐴})) |
| 9 | imaundir 6102 | . . . . 5 ⊢ ((𝐵 ∪ 𝐶) “ {𝐴}) = ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})) | |
| 10 | 9 | eleq2i 2825 | . . . 4 ⊢ ({𝑥} ∈ ((𝐵 ∪ 𝐶) “ {𝐴}) ↔ {𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴}))) |
| 11 | elun 4102 | . . . 4 ⊢ ({𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴}))) | |
| 12 | 8, 10, 11 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ (𝐴 Proj (𝐵 ∪ 𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴}))) |
| 13 | 5, 6, 12 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ (𝐴 Proj (𝐵 ∪ 𝐶)) ↔ 𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶))) |
| 14 | 13 | eqriv 2730 | 1 ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 {csn 4575 “ cima 5622 Proj bj-cproj 37055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-bj-proj 37056 |
| This theorem is referenced by: bj-pr1un 37068 bj-pr2un 37082 |
| Copyright terms: Public domain | W3C validator |