![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-projun | Structured version Visualization version GIF version |
Description: The class projection on a given component preserves unions. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-projun | ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-proj 35872 | . . . . 5 ⊢ (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} | |
2 | 1 | eqabri 2878 | . . . 4 ⊢ (𝑥 ∈ (𝐴 Proj 𝐵) ↔ {𝑥} ∈ (𝐵 “ {𝐴})) |
3 | df-bj-proj 35872 | . . . . 5 ⊢ (𝐴 Proj 𝐶) = {𝑥 ∣ {𝑥} ∈ (𝐶 “ {𝐴})} | |
4 | 3 | eqabri 2878 | . . . 4 ⊢ (𝑥 ∈ (𝐴 Proj 𝐶) ↔ {𝑥} ∈ (𝐶 “ {𝐴})) |
5 | 2, 4 | orbi12i 914 | . . 3 ⊢ ((𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴}))) |
6 | elun 4149 | . . 3 ⊢ (𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) ↔ (𝑥 ∈ (𝐴 Proj 𝐵) ∨ 𝑥 ∈ (𝐴 Proj 𝐶))) | |
7 | df-bj-proj 35872 | . . . . 5 ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = {𝑥 ∣ {𝑥} ∈ ((𝐵 ∪ 𝐶) “ {𝐴})} | |
8 | 7 | eqabri 2878 | . . . 4 ⊢ (𝑥 ∈ (𝐴 Proj (𝐵 ∪ 𝐶)) ↔ {𝑥} ∈ ((𝐵 ∪ 𝐶) “ {𝐴})) |
9 | imaundir 6151 | . . . . 5 ⊢ ((𝐵 ∪ 𝐶) “ {𝐴}) = ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})) | |
10 | 9 | eleq2i 2826 | . . . 4 ⊢ ({𝑥} ∈ ((𝐵 ∪ 𝐶) “ {𝐴}) ↔ {𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴}))) |
11 | elun 4149 | . . . 4 ⊢ ({𝑥} ∈ ((𝐵 “ {𝐴}) ∪ (𝐶 “ {𝐴})) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴}))) | |
12 | 8, 10, 11 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ (𝐴 Proj (𝐵 ∪ 𝐶)) ↔ ({𝑥} ∈ (𝐵 “ {𝐴}) ∨ {𝑥} ∈ (𝐶 “ {𝐴}))) |
13 | 5, 6, 12 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ (𝐴 Proj (𝐵 ∪ 𝐶)) ↔ 𝑥 ∈ ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶))) |
14 | 13 | eqriv 2730 | 1 ⊢ (𝐴 Proj (𝐵 ∪ 𝐶)) = ((𝐴 Proj 𝐵) ∪ (𝐴 Proj 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 846 = wceq 1542 ∈ wcel 2107 ∪ cun 3947 {csn 4629 “ cima 5680 Proj bj-cproj 35871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-bj-proj 35872 |
This theorem is referenced by: bj-pr1un 35884 bj-pr2un 35898 |
Copyright terms: Public domain | W3C validator |