Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projeq Structured version   Visualization version   GIF version

Theorem bj-projeq 36987
Description: Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projeq (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷)))

Proof of Theorem bj-projeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
2 simpl 482 . . . . . . 7 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐴 = 𝐶)
32sneqd 4604 . . . . . 6 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴} = {𝐶})
41, 3imaeq12d 6035 . . . . 5 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐵 “ {𝐴}) = (𝐷 “ {𝐶}))
54eleq2d 2815 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → ({𝑥} ∈ (𝐵 “ {𝐴}) ↔ {𝑥} ∈ (𝐷 “ {𝐶})))
65abbidv 2796 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} = {𝑥 ∣ {𝑥} ∈ (𝐷 “ {𝐶})})
7 df-bj-proj 36986 . . 3 (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})}
8 df-bj-proj 36986 . . 3 (𝐶 Proj 𝐷) = {𝑥 ∣ {𝑥} ∈ (𝐷 “ {𝐶})}
96, 7, 83eqtr4g 2790 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷))
109ex 412 1 (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  {csn 4592  cima 5644   Proj bj-cproj 36985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-bj-proj 36986
This theorem is referenced by:  bj-projeq2  36988
  Copyright terms: Public domain W3C validator