Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projeq Structured version   Visualization version   GIF version

Theorem bj-projeq 36958
Description: Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projeq (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷)))

Proof of Theorem bj-projeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
2 simpl 482 . . . . . . 7 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐴 = 𝐶)
32sneqd 4660 . . . . . 6 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴} = {𝐶})
41, 3imaeq12d 6090 . . . . 5 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐵 “ {𝐴}) = (𝐷 “ {𝐶}))
54eleq2d 2830 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → ({𝑥} ∈ (𝐵 “ {𝐴}) ↔ {𝑥} ∈ (𝐷 “ {𝐶})))
65abbidv 2811 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} = {𝑥 ∣ {𝑥} ∈ (𝐷 “ {𝐶})})
7 df-bj-proj 36957 . . 3 (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})}
8 df-bj-proj 36957 . . 3 (𝐶 Proj 𝐷) = {𝑥 ∣ {𝑥} ∈ (𝐷 “ {𝐶})}
96, 7, 83eqtr4g 2805 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷))
109ex 412 1 (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  {csn 4648  cima 5703   Proj bj-cproj 36956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-bj-proj 36957
This theorem is referenced by:  bj-projeq2  36959
  Copyright terms: Public domain W3C validator