![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-projeq | Structured version Visualization version GIF version |
Description: Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-projeq | ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐵 = 𝐷) | |
2 | simpl 484 | . . . . . . 7 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐴 = 𝐶) | |
3 | 2 | sneqd 4636 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴} = {𝐶}) |
4 | 1, 3 | imaeq12d 6053 | . . . . 5 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐵 “ {𝐴}) = (𝐷 “ {𝐶})) |
5 | 4 | eleq2d 2820 | . . . 4 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ({𝑥} ∈ (𝐵 “ {𝐴}) ↔ {𝑥} ∈ (𝐷 “ {𝐶}))) |
6 | 5 | abbidv 2802 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} = {𝑥 ∣ {𝑥} ∈ (𝐷 “ {𝐶})}) |
7 | df-bj-proj 35777 | . . 3 ⊢ (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} | |
8 | df-bj-proj 35777 | . . 3 ⊢ (𝐶 Proj 𝐷) = {𝑥 ∣ {𝑥} ∈ (𝐷 “ {𝐶})} | |
9 | 6, 7, 8 | 3eqtr4g 2798 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷)) |
10 | 9 | ex 414 | 1 ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 {csn 4624 “ cima 5675 Proj bj-cproj 35776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5145 df-opab 5207 df-xp 5678 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-bj-proj 35777 |
This theorem is referenced by: bj-projeq2 35779 |
Copyright terms: Public domain | W3C validator |