|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-projeq | Structured version Visualization version GIF version | ||
| Description: Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.) | 
| Ref | Expression | 
|---|---|
| bj-projeq | ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐵 = 𝐷) | |
| 2 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 𝐴 = 𝐶) | |
| 3 | 2 | sneqd 4637 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴} = {𝐶}) | 
| 4 | 1, 3 | imaeq12d 6078 | . . . . 5 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐵 “ {𝐴}) = (𝐷 “ {𝐶})) | 
| 5 | 4 | eleq2d 2826 | . . . 4 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ({𝑥} ∈ (𝐵 “ {𝐴}) ↔ {𝑥} ∈ (𝐷 “ {𝐶}))) | 
| 6 | 5 | abbidv 2807 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} = {𝑥 ∣ {𝑥} ∈ (𝐷 “ {𝐶})}) | 
| 7 | df-bj-proj 36993 | . . 3 ⊢ (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} | |
| 8 | df-bj-proj 36993 | . . 3 ⊢ (𝐶 Proj 𝐷) = {𝑥 ∣ {𝑥} ∈ (𝐷 “ {𝐶})} | |
| 9 | 6, 7, 8 | 3eqtr4g 2801 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷)) | 
| 10 | 9 | ex 412 | 1 ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 {csn 4625 “ cima 5687 Proj bj-cproj 36992 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-bj-proj 36993 | 
| This theorem is referenced by: bj-projeq2 36995 | 
| Copyright terms: Public domain | W3C validator |