Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projeq Structured version   Visualization version   GIF version

Theorem bj-projeq 36994
Description: Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projeq (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷)))

Proof of Theorem bj-projeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
2 simpl 482 . . . . . . 7 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐴 = 𝐶)
32sneqd 4637 . . . . . 6 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴} = {𝐶})
41, 3imaeq12d 6078 . . . . 5 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐵 “ {𝐴}) = (𝐷 “ {𝐶}))
54eleq2d 2826 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → ({𝑥} ∈ (𝐵 “ {𝐴}) ↔ {𝑥} ∈ (𝐷 “ {𝐶})))
65abbidv 2807 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} = {𝑥 ∣ {𝑥} ∈ (𝐷 “ {𝐶})})
7 df-bj-proj 36993 . . 3 (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})}
8 df-bj-proj 36993 . . 3 (𝐶 Proj 𝐷) = {𝑥 ∣ {𝑥} ∈ (𝐷 “ {𝐶})}
96, 7, 83eqtr4g 2801 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷))
109ex 412 1 (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2713  {csn 4625  cima 5687   Proj bj-cproj 36992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-bj-proj 36993
This theorem is referenced by:  bj-projeq2  36995
  Copyright terms: Public domain W3C validator