Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1146 Structured version   Visualization version   GIF version

Theorem bnj1146 32671
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1146.1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Assertion
Ref Expression
bnj1146 𝑥𝐴 𝐵𝐵
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem bnj1146
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . . . 6 𝑦(𝑥𝐴𝑤𝐵)
2 bnj1146.1 . . . . . . . 8 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
32nf5i 2144 . . . . . . 7 𝑥 𝑦𝐴
4 nfv 1918 . . . . . . 7 𝑥 𝑤𝐵
53, 4nfan 1903 . . . . . 6 𝑥(𝑦𝐴𝑤𝐵)
6 eleq1w 2821 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
76anbi1d 629 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐴𝑤𝐵) ↔ (𝑦𝐴𝑤𝐵)))
81, 5, 7cbvexv1 2341 . . . . 5 (∃𝑥(𝑥𝐴𝑤𝐵) ↔ ∃𝑦(𝑦𝐴𝑤𝐵))
9 df-rex 3069 . . . . 5 (∃𝑥𝐴 𝑤𝐵 ↔ ∃𝑥(𝑥𝐴𝑤𝐵))
10 df-rex 3069 . . . . 5 (∃𝑦𝐴 𝑤𝐵 ↔ ∃𝑦(𝑦𝐴𝑤𝐵))
118, 9, 103bitr4i 302 . . . 4 (∃𝑥𝐴 𝑤𝐵 ↔ ∃𝑦𝐴 𝑤𝐵)
1211abbii 2809 . . 3 {𝑤 ∣ ∃𝑥𝐴 𝑤𝐵} = {𝑤 ∣ ∃𝑦𝐴 𝑤𝐵}
13 df-iun 4923 . . 3 𝑥𝐴 𝐵 = {𝑤 ∣ ∃𝑥𝐴 𝑤𝐵}
14 df-iun 4923 . . 3 𝑦𝐴 𝐵 = {𝑤 ∣ ∃𝑦𝐴 𝑤𝐵}
1512, 13, 143eqtr4i 2776 . 2 𝑥𝐴 𝐵 = 𝑦𝐴 𝐵
16 bnj1143 32670 . 2 𝑦𝐴 𝐵𝐵
1715, 16eqsstri 3951 1 𝑥𝐴 𝐵𝐵
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wex 1783  wcel 2108  {cab 2715  wrex 3064  wss 3883   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-iun 4923
This theorem is referenced by:  bnj1145  32873
  Copyright terms: Public domain W3C validator