Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1149 Structured version   Visualization version   GIF version

Theorem bnj1149 32766
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1149.1 (𝜑𝐴 ∈ V)
bnj1149.2 (𝜑𝐵 ∈ V)
Assertion
Ref Expression
bnj1149 (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem bnj1149
StepHypRef Expression
1 bnj1149.1 . 2 (𝜑𝐴 ∈ V)
2 bnj1149.2 . 2 (𝜑𝐵 ∈ V)
3 unexg 7591 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  Vcvv 3431  cun 3890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-sn 4568  df-pr 4570  df-uni 4846
This theorem is referenced by:  bnj1136  32971  bnj1413  33009  bnj1452  33026  bnj1489  33030
  Copyright terms: Public domain W3C validator