![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1149 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1149.1 | ⊢ (𝜑 → 𝐴 ∈ V) |
bnj1149.2 | ⊢ (𝜑 → 𝐵 ∈ V) |
Ref | Expression |
---|---|
bnj1149 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1149.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | bnj1149.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) | |
3 | unexg 7193 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
4 | 1, 2, 3 | syl2anc 580 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 Vcvv 3385 ∪ cun 3767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-sn 4369 df-pr 4371 df-uni 4629 |
This theorem is referenced by: bnj1136 31582 bnj1413 31620 bnj1452 31637 bnj1489 31641 |
Copyright terms: Public domain | W3C validator |