Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1149 Structured version   Visualization version   GIF version

Theorem bnj1149 32772
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1149.1 (𝜑𝐴 ∈ V)
bnj1149.2 (𝜑𝐵 ∈ V)
Assertion
Ref Expression
bnj1149 (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem bnj1149
StepHypRef Expression
1 bnj1149.1 . 2 (𝜑𝐴 ∈ V)
2 bnj1149.2 . 2 (𝜑𝐵 ∈ V)
3 unexg 7599 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3432  cun 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-uni 4840
This theorem is referenced by:  bnj1136  32977  bnj1413  33015  bnj1452  33032  bnj1489  33036
  Copyright terms: Public domain W3C validator