Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1149 Structured version   Visualization version   GIF version

Theorem bnj1149 34804
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1149.1 (𝜑𝐴 ∈ V)
bnj1149.2 (𝜑𝐵 ∈ V)
Assertion
Ref Expression
bnj1149 (𝜑 → (𝐴𝐵) ∈ V)

Proof of Theorem bnj1149
StepHypRef Expression
1 bnj1149.1 . 2 (𝜑𝐴 ∈ V)
2 bnj1149.2 . 2 (𝜑𝐵 ∈ V)
3 unexg 7676 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  cun 3895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-sn 4574  df-pr 4576  df-uni 4857
This theorem is referenced by:  bnj1136  35009  bnj1413  35047  bnj1452  35064  bnj1489  35068
  Copyright terms: Public domain W3C validator