|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1185 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj1185.1 | ⊢ (𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧) | 
| Ref | Expression | 
|---|---|
| bnj1185 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1185.1 | . . 3 ⊢ (𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧) | |
| 2 | breq1 5146 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤𝑅𝑧 ↔ 𝑦𝑅𝑧)) | |
| 3 | 2 | notbid 318 | . . . . 5 ⊢ (𝑤 = 𝑦 → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑦𝑅𝑧)) | 
| 4 | 3 | cbvralvw 3237 | . . . 4 ⊢ (∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) | 
| 5 | 4 | rexbii 3094 | . . 3 ⊢ (∃𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) | 
| 6 | 1, 5 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) | 
| 7 | eleq1w 2824 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
| 8 | breq2 5147 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑦𝑅𝑧 ↔ 𝑦𝑅𝑥)) | |
| 9 | 8 | notbid 318 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (¬ 𝑦𝑅𝑧 ↔ ¬ 𝑦𝑅𝑥)) | 
| 10 | 9 | ralbidv 3178 | . . . . 5 ⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) | 
| 11 | 7, 10 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝑥 → ((𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) | 
| 12 | 11 | cbvexvw 2036 | . . 3 ⊢ (∃𝑧(𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) | 
| 13 | df-rex 3071 | . . 3 ⊢ (∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧 ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧)) | |
| 14 | df-rex 3071 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) | |
| 15 | 12, 13, 14 | 3bitr4ri 304 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) | 
| 16 | 6, 15 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 class class class wbr 5143 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 | 
| This theorem is referenced by: bnj1190 35022 bnj1189 35023 | 
| Copyright terms: Public domain | W3C validator |