![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1185 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1185.1 | ⊢ (𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧) |
Ref | Expression |
---|---|
bnj1185 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1185.1 | . . 3 ⊢ (𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧) | |
2 | breq1 5145 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤𝑅𝑧 ↔ 𝑦𝑅𝑧)) | |
3 | 2 | notbid 318 | . . . . 5 ⊢ (𝑤 = 𝑦 → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑦𝑅𝑧)) |
4 | 3 | cbvralvw 3230 | . . . 4 ⊢ (∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) |
5 | 4 | rexbii 3090 | . . 3 ⊢ (∃𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧 ↔ ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) |
6 | 1, 5 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) |
7 | eleq1w 2812 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
8 | breq2 5146 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑦𝑅𝑧 ↔ 𝑦𝑅𝑥)) | |
9 | 8 | notbid 318 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (¬ 𝑦𝑅𝑧 ↔ ¬ 𝑦𝑅𝑥)) |
10 | 9 | ralbidv 3173 | . . . . 5 ⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
11 | 7, 10 | anbi12d 631 | . . . 4 ⊢ (𝑧 = 𝑥 → ((𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥))) |
12 | 11 | cbvexvw 2033 | . . 3 ⊢ (∃𝑧(𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) |
13 | df-rex 3067 | . . 3 ⊢ (∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧 ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧)) | |
14 | df-rex 3067 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥)) | |
15 | 12, 13, 14 | 3bitr4ri 304 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑧) |
16 | 6, 15 | sylibr 233 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1774 ∈ wcel 2099 ∀wral 3057 ∃wrex 3066 class class class wbr 5142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 |
This theorem is referenced by: bnj1190 34633 bnj1189 34634 |
Copyright terms: Public domain | W3C validator |