| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1525 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj1522 35108. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1525.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1525.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1525.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1525.4 | ⊢ 𝐹 = ∪ 𝐶 |
| bnj1525.5 | ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐺‘〈𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))〉))) |
| bnj1525.6 | ⊢ (𝜓 ↔ (𝜑 ∧ 𝐹 ≠ 𝐻)) |
| Ref | Expression |
|---|---|
| bnj1525 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1525.6 | . . 3 ⊢ (𝜓 ↔ (𝜑 ∧ 𝐹 ≠ 𝐻)) | |
| 2 | bnj1525.5 | . . . . 5 ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐺‘〈𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))〉))) | |
| 3 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑅 FrSe 𝐴 | |
| 4 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝐻 Fn 𝐴 | |
| 5 | nfra1 3270 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐺‘〈𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))〉) | |
| 6 | 3, 4, 5 | nf3an 1901 | . . . . 5 ⊢ Ⅎ𝑥(𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐺‘〈𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
| 7 | 2, 6 | nfxfr 1853 | . . . 4 ⊢ Ⅎ𝑥𝜑 |
| 8 | bnj1525.4 | . . . . . 6 ⊢ 𝐹 = ∪ 𝐶 | |
| 9 | bnj1525.3 | . . . . . . . . 9 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 10 | bnj1525.1 | . . . . . . . . . 10 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
| 11 | 10 | bnj1309 35058 | . . . . . . . . 9 ⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) |
| 12 | 9, 11 | bnj1307 35059 | . . . . . . . 8 ⊢ (𝑤 ∈ 𝐶 → ∀𝑥 𝑤 ∈ 𝐶) |
| 13 | 12 | nfcii 2888 | . . . . . . 7 ⊢ Ⅎ𝑥𝐶 |
| 14 | 13 | nfuni 4895 | . . . . . 6 ⊢ Ⅎ𝑥∪ 𝐶 |
| 15 | 8, 14 | nfcxfr 2897 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
| 16 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑥𝐻 | |
| 17 | 15, 16 | nfne 3034 | . . . 4 ⊢ Ⅎ𝑥 𝐹 ≠ 𝐻 |
| 18 | 7, 17 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝐹 ≠ 𝐻) |
| 19 | 1, 18 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥𝜓 |
| 20 | 19 | nf5ri 2196 | 1 ⊢ (𝜓 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 {cab 2714 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 ⊆ wss 3931 〈cop 4612 ∪ cuni 4888 ↾ cres 5661 Fn wfn 6531 ‘cfv 6536 predc-bnj14 34724 FrSe w-bnj15 34728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-uni 4889 |
| This theorem is referenced by: bnj1523 35107 |
| Copyright terms: Public domain | W3C validator |