Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1525 Structured version   Visualization version   GIF version

Theorem bnj1525 33028
Description: Technical lemma for bnj1522 33031. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1525.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1525.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1525.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1525.4 𝐹 = 𝐶
bnj1525.5 (𝜑 ↔ (𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
bnj1525.6 (𝜓 ↔ (𝜑𝐹𝐻))
Assertion
Ref Expression
bnj1525 (𝜓 → ∀𝑥𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐻   𝑥,𝑅   𝑥,𝑑   𝑥,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑑)   𝜓(𝑥,𝑓,𝑑)   𝐴(𝑓,𝑑)   𝐵(𝑥,𝑓,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑅(𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝐺(𝑥,𝑓,𝑑)   𝐻(𝑓,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1525
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1525.6 . . 3 (𝜓 ↔ (𝜑𝐹𝐻))
2 bnj1525.5 . . . . 5 (𝜑 ↔ (𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
3 nfv 1920 . . . . . 6 𝑥 𝑅 FrSe 𝐴
4 nfv 1920 . . . . . 6 𝑥 𝐻 Fn 𝐴
5 nfra1 3144 . . . . . 6 𝑥𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
63, 4, 5nf3an 1907 . . . . 5 𝑥(𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
72, 6nfxfr 1858 . . . 4 𝑥𝜑
8 bnj1525.4 . . . . . 6 𝐹 = 𝐶
9 bnj1525.3 . . . . . . . . 9 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
10 bnj1525.1 . . . . . . . . . 10 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
1110bnj1309 32981 . . . . . . . . 9 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
129, 11bnj1307 32982 . . . . . . . 8 (𝑤𝐶 → ∀𝑥 𝑤𝐶)
1312nfcii 2892 . . . . . . 7 𝑥𝐶
1413nfuni 4851 . . . . . 6 𝑥 𝐶
158, 14nfcxfr 2906 . . . . 5 𝑥𝐹
16 nfcv 2908 . . . . 5 𝑥𝐻
1715, 16nfne 3046 . . . 4 𝑥 𝐹𝐻
187, 17nfan 1905 . . 3 𝑥(𝜑𝐹𝐻)
191, 18nfxfr 1858 . 2 𝑥𝜓
2019nf5ri 2191 1 (𝜓 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wal 1539   = wceq 1541  {cab 2716  wne 2944  wral 3065  wrex 3066  wss 3891  cop 4572   cuni 4844  cres 5590   Fn wfn 6425  cfv 6430   predc-bnj14 32646   FrSe w-bnj15 32650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-uni 4845
This theorem is referenced by:  bnj1523  33030
  Copyright terms: Public domain W3C validator