Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj900 Structured version   Visualization version   GIF version

Theorem bnj900 34965
Description: Technical lemma for bnj69 35046. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj900.3 𝐷 = (ω ∖ {∅})
bnj900.4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
Assertion
Ref Expression
bnj900 (𝑓𝐵 → ∅ ∈ dom 𝑓)
Distinct variable group:   𝑓,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝜓(𝑓,𝑛)   𝐵(𝑓,𝑛)   𝐷(𝑓,𝑛)

Proof of Theorem bnj900
StepHypRef Expression
1 bnj900.4 . . . . . 6 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
21bnj1436 34875 . . . . 5 (𝑓𝐵 → ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓))
3 simp1 1136 . . . . . 6 ((𝑓 Fn 𝑛𝜑𝜓) → 𝑓 Fn 𝑛)
43reximi 3075 . . . . 5 (∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓) → ∃𝑛𝐷 𝑓 Fn 𝑛)
5 fndm 6646 . . . . . 6 (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛)
65reximi 3075 . . . . 5 (∃𝑛𝐷 𝑓 Fn 𝑛 → ∃𝑛𝐷 dom 𝑓 = 𝑛)
72, 4, 63syl 18 . . . 4 (𝑓𝐵 → ∃𝑛𝐷 dom 𝑓 = 𝑛)
87bnj1196 34830 . . 3 (𝑓𝐵 → ∃𝑛(𝑛𝐷 ∧ dom 𝑓 = 𝑛))
9 nfre1 3271 . . . . . . 7 𝑛𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)
109nfab 2905 . . . . . 6 𝑛{𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
111, 10nfcxfr 2897 . . . . 5 𝑛𝐵
1211nfcri 2891 . . . 4 𝑛 𝑓𝐵
131219.37 2233 . . 3 (∃𝑛(𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛)) ↔ (𝑓𝐵 → ∃𝑛(𝑛𝐷 ∧ dom 𝑓 = 𝑛)))
148, 13mpbir 231 . 2 𝑛(𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛))
15 nfv 1914 . . . 4 𝑛∅ ∈ dom 𝑓
1612, 15nfim 1896 . . 3 𝑛(𝑓𝐵 → ∅ ∈ dom 𝑓)
17 bnj900.3 . . . . . 6 𝐷 = (ω ∖ {∅})
1817bnj529 34777 . . . . 5 (𝑛𝐷 → ∅ ∈ 𝑛)
19 eleq2 2824 . . . . . 6 (dom 𝑓 = 𝑛 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑛))
2019biimparc 479 . . . . 5 ((∅ ∈ 𝑛 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓)
2118, 20sylan 580 . . . 4 ((𝑛𝐷 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓)
2221imim2i 16 . . 3 ((𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓𝐵 → ∅ ∈ dom 𝑓))
2316, 22exlimi 2218 . 2 (∃𝑛(𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓𝐵 → ∅ ∈ dom 𝑓))
2414, 23ax-mp 5 1 (𝑓𝐵 → ∅ ∈ dom 𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wrex 3061  cdif 3928  c0 4313  {csn 4606  dom cdm 5659   Fn wfn 6531  ωcom 7866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361  df-fn 6539  df-om 7867
This theorem is referenced by:  bnj906  34966
  Copyright terms: Public domain W3C validator