Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj900 Structured version   Visualization version   GIF version

Theorem bnj900 32809
Description: Technical lemma for bnj69 32890. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj900.3 𝐷 = (ω ∖ {∅})
bnj900.4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
Assertion
Ref Expression
bnj900 (𝑓𝐵 → ∅ ∈ dom 𝑓)
Distinct variable group:   𝑓,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝜓(𝑓,𝑛)   𝐵(𝑓,𝑛)   𝐷(𝑓,𝑛)

Proof of Theorem bnj900
StepHypRef Expression
1 bnj900.4 . . . . . 6 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
21bnj1436 32719 . . . . 5 (𝑓𝐵 → ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓))
3 simp1 1134 . . . . . 6 ((𝑓 Fn 𝑛𝜑𝜓) → 𝑓 Fn 𝑛)
43reximi 3174 . . . . 5 (∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓) → ∃𝑛𝐷 𝑓 Fn 𝑛)
5 fndm 6520 . . . . . 6 (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛)
65reximi 3174 . . . . 5 (∃𝑛𝐷 𝑓 Fn 𝑛 → ∃𝑛𝐷 dom 𝑓 = 𝑛)
72, 4, 63syl 18 . . . 4 (𝑓𝐵 → ∃𝑛𝐷 dom 𝑓 = 𝑛)
87bnj1196 32674 . . 3 (𝑓𝐵 → ∃𝑛(𝑛𝐷 ∧ dom 𝑓 = 𝑛))
9 nfre1 3234 . . . . . . 7 𝑛𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)
109nfab 2912 . . . . . 6 𝑛{𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
111, 10nfcxfr 2904 . . . . 5 𝑛𝐵
1211nfcri 2893 . . . 4 𝑛 𝑓𝐵
131219.37 2228 . . 3 (∃𝑛(𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛)) ↔ (𝑓𝐵 → ∃𝑛(𝑛𝐷 ∧ dom 𝑓 = 𝑛)))
148, 13mpbir 230 . 2 𝑛(𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛))
15 nfv 1918 . . . 4 𝑛∅ ∈ dom 𝑓
1612, 15nfim 1900 . . 3 𝑛(𝑓𝐵 → ∅ ∈ dom 𝑓)
17 bnj900.3 . . . . . 6 𝐷 = (ω ∖ {∅})
1817bnj529 32621 . . . . 5 (𝑛𝐷 → ∅ ∈ 𝑛)
19 eleq2 2827 . . . . . 6 (dom 𝑓 = 𝑛 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑛))
2019biimparc 479 . . . . 5 ((∅ ∈ 𝑛 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓)
2118, 20sylan 579 . . . 4 ((𝑛𝐷 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓)
2221imim2i 16 . . 3 ((𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓𝐵 → ∅ ∈ dom 𝑓))
2316, 22exlimi 2213 . 2 (∃𝑛(𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓𝐵 → ∅ ∈ dom 𝑓))
2414, 23ax-mp 5 1 (𝑓𝐵 → ∅ ∈ dom 𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wrex 3064  cdif 3880  c0 4253  {csn 4558  dom cdm 5580   Fn wfn 6413  ωcom 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-fn 6421  df-om 7688
This theorem is referenced by:  bnj906  32810
  Copyright terms: Public domain W3C validator