Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj900 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 32890. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj900.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj900.4 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
Ref | Expression |
---|---|
bnj900 | ⊢ (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj900.4 | . . . . . 6 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
2 | 1 | bnj1436 32719 | . . . . 5 ⊢ (𝑓 ∈ 𝐵 → ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
3 | simp1 1134 | . . . . . 6 ⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → 𝑓 Fn 𝑛) | |
4 | 3 | reximi 3174 | . . . . 5 ⊢ (∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → ∃𝑛 ∈ 𝐷 𝑓 Fn 𝑛) |
5 | fndm 6520 | . . . . . 6 ⊢ (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛) | |
6 | 5 | reximi 3174 | . . . . 5 ⊢ (∃𝑛 ∈ 𝐷 𝑓 Fn 𝑛 → ∃𝑛 ∈ 𝐷 dom 𝑓 = 𝑛) |
7 | 2, 4, 6 | 3syl 18 | . . . 4 ⊢ (𝑓 ∈ 𝐵 → ∃𝑛 ∈ 𝐷 dom 𝑓 = 𝑛) |
8 | 7 | bnj1196 32674 | . . 3 ⊢ (𝑓 ∈ 𝐵 → ∃𝑛(𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) |
9 | nfre1 3234 | . . . . . . 7 ⊢ Ⅎ𝑛∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) | |
10 | 9 | nfab 2912 | . . . . . 6 ⊢ Ⅎ𝑛{𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
11 | 1, 10 | nfcxfr 2904 | . . . . 5 ⊢ Ⅎ𝑛𝐵 |
12 | 11 | nfcri 2893 | . . . 4 ⊢ Ⅎ𝑛 𝑓 ∈ 𝐵 |
13 | 12 | 19.37 2228 | . . 3 ⊢ (∃𝑛(𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) ↔ (𝑓 ∈ 𝐵 → ∃𝑛(𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛))) |
14 | 8, 13 | mpbir 230 | . 2 ⊢ ∃𝑛(𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) |
15 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑛∅ ∈ dom 𝑓 | |
16 | 12, 15 | nfim 1900 | . . 3 ⊢ Ⅎ𝑛(𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓) |
17 | bnj900.3 | . . . . . 6 ⊢ 𝐷 = (ω ∖ {∅}) | |
18 | 17 | bnj529 32621 | . . . . 5 ⊢ (𝑛 ∈ 𝐷 → ∅ ∈ 𝑛) |
19 | eleq2 2827 | . . . . . 6 ⊢ (dom 𝑓 = 𝑛 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑛)) | |
20 | 19 | biimparc 479 | . . . . 5 ⊢ ((∅ ∈ 𝑛 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓) |
21 | 18, 20 | sylan 579 | . . . 4 ⊢ ((𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓) |
22 | 21 | imim2i 16 | . . 3 ⊢ ((𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓)) |
23 | 16, 22 | exlimi 2213 | . 2 ⊢ (∃𝑛(𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓)) |
24 | 14, 23 | ax-mp 5 | 1 ⊢ (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∃wrex 3064 ∖ cdif 3880 ∅c0 4253 {csn 4558 dom cdm 5580 Fn wfn 6413 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-fn 6421 df-om 7688 |
This theorem is referenced by: bnj906 32810 |
Copyright terms: Public domain | W3C validator |