Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj900 Structured version   Visualization version   GIF version

Theorem bnj900 33940
Description: Technical lemma for bnj69 34021. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj900.3 𝐷 = (ω ∖ {∅})
bnj900.4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
Assertion
Ref Expression
bnj900 (𝑓𝐵 → ∅ ∈ dom 𝑓)
Distinct variable group:   𝑓,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝜓(𝑓,𝑛)   𝐵(𝑓,𝑛)   𝐷(𝑓,𝑛)

Proof of Theorem bnj900
StepHypRef Expression
1 bnj900.4 . . . . . 6 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
21bnj1436 33850 . . . . 5 (𝑓𝐵 → ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓))
3 simp1 1137 . . . . . 6 ((𝑓 Fn 𝑛𝜑𝜓) → 𝑓 Fn 𝑛)
43reximi 3085 . . . . 5 (∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓) → ∃𝑛𝐷 𝑓 Fn 𝑛)
5 fndm 6653 . . . . . 6 (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛)
65reximi 3085 . . . . 5 (∃𝑛𝐷 𝑓 Fn 𝑛 → ∃𝑛𝐷 dom 𝑓 = 𝑛)
72, 4, 63syl 18 . . . 4 (𝑓𝐵 → ∃𝑛𝐷 dom 𝑓 = 𝑛)
87bnj1196 33805 . . 3 (𝑓𝐵 → ∃𝑛(𝑛𝐷 ∧ dom 𝑓 = 𝑛))
9 nfre1 3283 . . . . . . 7 𝑛𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)
109nfab 2910 . . . . . 6 𝑛{𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
111, 10nfcxfr 2902 . . . . 5 𝑛𝐵
1211nfcri 2891 . . . 4 𝑛 𝑓𝐵
131219.37 2226 . . 3 (∃𝑛(𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛)) ↔ (𝑓𝐵 → ∃𝑛(𝑛𝐷 ∧ dom 𝑓 = 𝑛)))
148, 13mpbir 230 . 2 𝑛(𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛))
15 nfv 1918 . . . 4 𝑛∅ ∈ dom 𝑓
1612, 15nfim 1900 . . 3 𝑛(𝑓𝐵 → ∅ ∈ dom 𝑓)
17 bnj900.3 . . . . . 6 𝐷 = (ω ∖ {∅})
1817bnj529 33752 . . . . 5 (𝑛𝐷 → ∅ ∈ 𝑛)
19 eleq2 2823 . . . . . 6 (dom 𝑓 = 𝑛 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑛))
2019biimparc 481 . . . . 5 ((∅ ∈ 𝑛 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓)
2118, 20sylan 581 . . . 4 ((𝑛𝐷 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓)
2221imim2i 16 . . 3 ((𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓𝐵 → ∅ ∈ dom 𝑓))
2316, 22exlimi 2211 . 2 (∃𝑛(𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓𝐵 → ∅ ∈ dom 𝑓))
2414, 23ax-mp 5 1 (𝑓𝐵 → ∅ ∈ dom 𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  {cab 2710  wrex 3071  cdif 3946  c0 4323  {csn 4629  dom cdm 5677   Fn wfn 6539  ωcom 7855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-fn 6547  df-om 7856
This theorem is referenced by:  bnj906  33941
  Copyright terms: Public domain W3C validator