![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj900 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 33679. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj900.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj900.4 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
Ref | Expression |
---|---|
bnj900 | ⊢ (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj900.4 | . . . . . 6 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
2 | 1 | bnj1436 33508 | . . . . 5 ⊢ (𝑓 ∈ 𝐵 → ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
3 | simp1 1137 | . . . . . 6 ⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → 𝑓 Fn 𝑛) | |
4 | 3 | reximi 3084 | . . . . 5 ⊢ (∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → ∃𝑛 ∈ 𝐷 𝑓 Fn 𝑛) |
5 | fndm 6606 | . . . . . 6 ⊢ (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛) | |
6 | 5 | reximi 3084 | . . . . 5 ⊢ (∃𝑛 ∈ 𝐷 𝑓 Fn 𝑛 → ∃𝑛 ∈ 𝐷 dom 𝑓 = 𝑛) |
7 | 2, 4, 6 | 3syl 18 | . . . 4 ⊢ (𝑓 ∈ 𝐵 → ∃𝑛 ∈ 𝐷 dom 𝑓 = 𝑛) |
8 | 7 | bnj1196 33463 | . . 3 ⊢ (𝑓 ∈ 𝐵 → ∃𝑛(𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) |
9 | nfre1 3267 | . . . . . . 7 ⊢ Ⅎ𝑛∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) | |
10 | 9 | nfab 2910 | . . . . . 6 ⊢ Ⅎ𝑛{𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
11 | 1, 10 | nfcxfr 2902 | . . . . 5 ⊢ Ⅎ𝑛𝐵 |
12 | 11 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑛 𝑓 ∈ 𝐵 |
13 | 12 | 19.37 2226 | . . 3 ⊢ (∃𝑛(𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) ↔ (𝑓 ∈ 𝐵 → ∃𝑛(𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛))) |
14 | 8, 13 | mpbir 230 | . 2 ⊢ ∃𝑛(𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) |
15 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑛∅ ∈ dom 𝑓 | |
16 | 12, 15 | nfim 1900 | . . 3 ⊢ Ⅎ𝑛(𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓) |
17 | bnj900.3 | . . . . . 6 ⊢ 𝐷 = (ω ∖ {∅}) | |
18 | 17 | bnj529 33410 | . . . . 5 ⊢ (𝑛 ∈ 𝐷 → ∅ ∈ 𝑛) |
19 | eleq2 2823 | . . . . . 6 ⊢ (dom 𝑓 = 𝑛 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑛)) | |
20 | 19 | biimparc 481 | . . . . 5 ⊢ ((∅ ∈ 𝑛 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓) |
21 | 18, 20 | sylan 581 | . . . 4 ⊢ ((𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓) |
22 | 21 | imim2i 16 | . . 3 ⊢ ((𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓)) |
23 | 16, 22 | exlimi 2211 | . 2 ⊢ (∃𝑛(𝑓 ∈ 𝐵 → (𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓)) |
24 | 14, 23 | ax-mp 5 | 1 ⊢ (𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ∃wrex 3070 ∖ cdif 3908 ∅c0 4283 {csn 4587 dom cdm 5634 Fn wfn 6492 ωcom 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-tr 5224 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-ord 6321 df-on 6322 df-fn 6500 df-om 7804 |
This theorem is referenced by: bnj906 33599 |
Copyright terms: Public domain | W3C validator |