Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1519 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj1500 32568. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1519.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1519.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1519.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1519.4 | ⊢ 𝐹 = ∪ 𝐶 |
Ref | Expression |
---|---|
bnj1519 | ⊢ ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) → ∀𝑑(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1519.4 | . . . . 5 ⊢ 𝐹 = ∪ 𝐶 | |
2 | bnj1519.3 | . . . . . . 7 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
3 | nfre1 3230 | . . . . . . . 8 ⊢ Ⅎ𝑑∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) | |
4 | 3 | nfab 2925 | . . . . . . 7 ⊢ Ⅎ𝑑{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
5 | 2, 4 | nfcxfr 2917 | . . . . . 6 ⊢ Ⅎ𝑑𝐶 |
6 | 5 | nfuni 4805 | . . . . 5 ⊢ Ⅎ𝑑∪ 𝐶 |
7 | 1, 6 | nfcxfr 2917 | . . . 4 ⊢ Ⅎ𝑑𝐹 |
8 | nfcv 2919 | . . . 4 ⊢ Ⅎ𝑑𝑥 | |
9 | 7, 8 | nffv 6668 | . . 3 ⊢ Ⅎ𝑑(𝐹‘𝑥) |
10 | nfcv 2919 | . . . 4 ⊢ Ⅎ𝑑𝐺 | |
11 | nfcv 2919 | . . . . . 6 ⊢ Ⅎ𝑑 pred(𝑥, 𝐴, 𝑅) | |
12 | 7, 11 | nfres 5825 | . . . . 5 ⊢ Ⅎ𝑑(𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) |
13 | 8, 12 | nfop 4779 | . . . 4 ⊢ Ⅎ𝑑〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
14 | 10, 13 | nffv 6668 | . . 3 ⊢ Ⅎ𝑑(𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
15 | 9, 14 | nfeq 2932 | . 2 ⊢ Ⅎ𝑑(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
16 | 15 | nf5ri 2193 | 1 ⊢ ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) → ∀𝑑(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wal 1536 = wceq 1538 {cab 2735 ∀wral 3070 ∃wrex 3071 ⊆ wss 3858 〈cop 4528 ∪ cuni 4798 ↾ cres 5526 Fn wfn 6330 ‘cfv 6335 predc-bnj14 32186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-xp 5530 df-res 5536 df-iota 6294 df-fv 6343 |
This theorem is referenced by: bnj1501 32567 |
Copyright terms: Public domain | W3C validator |