Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1519 Structured version   Visualization version   GIF version

Theorem bnj1519 35058
Description: Technical lemma for bnj1500 35061. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1519.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1519.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1519.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1519.4 𝐹 = 𝐶
Assertion
Ref Expression
bnj1519 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Distinct variable groups:   𝐴,𝑑   𝐺,𝑑   𝑅,𝑑   𝑥,𝑑   𝑓,𝑑
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐵(𝑥,𝑓,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑅(𝑥,𝑓)   𝐹(𝑥,𝑓,𝑑)   𝐺(𝑥,𝑓)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1519
StepHypRef Expression
1 bnj1519.4 . . . . 5 𝐹 = 𝐶
2 bnj1519.3 . . . . . . 7 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
3 nfre1 3283 . . . . . . . 8 𝑑𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))
43nfab 2909 . . . . . . 7 𝑑{𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
52, 4nfcxfr 2901 . . . . . 6 𝑑𝐶
65nfuni 4919 . . . . 5 𝑑 𝐶
71, 6nfcxfr 2901 . . . 4 𝑑𝐹
8 nfcv 2903 . . . 4 𝑑𝑥
97, 8nffv 6917 . . 3 𝑑(𝐹𝑥)
10 nfcv 2903 . . . 4 𝑑𝐺
11 nfcv 2903 . . . . . 6 𝑑 pred(𝑥, 𝐴, 𝑅)
127, 11nfres 6002 . . . . 5 𝑑(𝐹 ↾ pred(𝑥, 𝐴, 𝑅))
138, 12nfop 4894 . . . 4 𝑑𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩
1410, 13nffv 6917 . . 3 𝑑(𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
159, 14nfeq 2917 . 2 𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
1615nf5ri 2193 1 ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑑(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  {cab 2712  wral 3059  wrex 3068  wss 3963  cop 4637   cuni 4912  cres 5691   Fn wfn 6558  cfv 6563   predc-bnj14 34681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-res 5701  df-iota 6516  df-fv 6571
This theorem is referenced by:  bnj1501  35060
  Copyright terms: Public domain W3C validator