![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1519 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj1500 34378. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1519.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1519.2 | ⊢ 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
bnj1519.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1519.4 | ⊢ 𝐹 = ∪ 𝐶 |
Ref | Expression |
---|---|
bnj1519 | ⊢ ((𝐹‘𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑑(𝐹‘𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1519.4 | . . . . 5 ⊢ 𝐹 = ∪ 𝐶 | |
2 | bnj1519.3 | . . . . . . 7 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
3 | nfre1 3281 | . . . . . . . 8 ⊢ Ⅎ𝑑∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) | |
4 | 3 | nfab 2908 | . . . . . . 7 ⊢ Ⅎ𝑑{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
5 | 2, 4 | nfcxfr 2900 | . . . . . 6 ⊢ Ⅎ𝑑𝐶 |
6 | 5 | nfuni 4915 | . . . . 5 ⊢ Ⅎ𝑑∪ 𝐶 |
7 | 1, 6 | nfcxfr 2900 | . . . 4 ⊢ Ⅎ𝑑𝐹 |
8 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑑𝑥 | |
9 | 7, 8 | nffv 6901 | . . 3 ⊢ Ⅎ𝑑(𝐹‘𝑥) |
10 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑑𝐺 | |
11 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑑 pred(𝑥, 𝐴, 𝑅) | |
12 | 7, 11 | nfres 5983 | . . . . 5 ⊢ Ⅎ𝑑(𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) |
13 | 8, 12 | nfop 4889 | . . . 4 ⊢ Ⅎ𝑑⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
14 | 10, 13 | nffv 6901 | . . 3 ⊢ Ⅎ𝑑(𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) |
15 | 9, 14 | nfeq 2915 | . 2 ⊢ Ⅎ𝑑(𝐹‘𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) |
16 | 15 | nf5ri 2187 | 1 ⊢ ((𝐹‘𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) → ∀𝑑(𝐹‘𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 {cab 2708 ∀wral 3060 ∃wrex 3069 ⊆ wss 3948 ⟨cop 4634 ∪ cuni 4908 ↾ cres 5678 Fn wfn 6538 ‘cfv 6543 predc-bnj14 33998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-res 5688 df-iota 6495 df-fv 6551 |
This theorem is referenced by: bnj1501 34377 |
Copyright terms: Public domain | W3C validator |