Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj893 Structured version   Visualization version   GIF version

Theorem bnj893 31533
Description: Property of trCl. Under certain conditions, the transitive closure of 𝑋 in 𝐴 by 𝑅 is a set. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj893 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)

Proof of Theorem bnj893
Dummy variables 𝑓 𝑔 𝑖 𝑛 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 253 . . 3 ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 biid 253 . . 3 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 eqid 2825 . . 3 (ω ∖ {∅}) = (ω ∖ {∅})
4 eqid 2825 . . 3 {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}
51, 2, 3, 4bnj882 31531 . 2 trCl(𝑋, 𝐴, 𝑅) = 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖)
6 vex 3417 . . . . . . . . . . 11 𝑔 ∈ V
7 fveq1 6432 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅))
87eqeq1d 2827 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅)))
96, 8sbcie 3697 . . . . . . . . . 10 ([𝑔 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅))
109bicomi 216 . . . . . . . . 9 ((𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [𝑔 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
11 fveq1 6432 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓‘suc 𝑖) = (𝑔‘suc 𝑖))
12 fveq1 6432 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑖) = (𝑔𝑖))
1312iuneq1d 4765 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))
1411, 13eqeq12d 2840 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ((𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
1514imbi2d 332 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
1615ralbidv 3195 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
176, 16sbcie 3697 . . . . . . . . . 10 ([𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
1817bicomi 216 . . . . . . . . 9 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
194, 10, 18bnj873 31529 . . . . . . . 8 {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}
2019eleq2i 2898 . . . . . . 7 (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} ↔ 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))})
2120anbi1i 617 . . . . . 6 ((𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} ∧ 𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)) ↔ (𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} ∧ 𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)))
2221rexbii2 3249 . . . . 5 (∃𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖) ↔ ∃𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖))
2322abbii 2944 . . . 4 {𝑤 ∣ ∃𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)} = {𝑤 ∣ ∃𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)}
24 df-iun 4742 . . . 4 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) = {𝑤 ∣ ∃𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)}
25 df-iun 4742 . . . 4 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) = {𝑤 ∣ ∃𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)}
2623, 24, 253eqtr4i 2859 . . 3 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) = 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖)
27 biid 253 . . . . 5 ((𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅))
28 biid 253 . . . . 5 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
29 eqid 2825 . . . . 5 {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}
30 biid 253 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴𝑛 ∈ (ω ∖ {∅})) ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛 ∈ (ω ∖ {∅})))
31 biid 253 . . . . 5 ((𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
32 biid 253 . . . . 5 ([𝑧 / 𝑔](𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [𝑧 / 𝑔](𝑔‘∅) = pred(𝑋, 𝐴, 𝑅))
33 biid 253 . . . . 5 ([𝑧 / 𝑔]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑧 / 𝑔]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
34 biid 253 . . . . 5 ([𝑧 / 𝑔](𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝑧 / 𝑔](𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
35 biid 253 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) ↔ (𝑅 FrSe 𝐴𝑋𝐴))
3627, 28, 3, 29, 30, 31, 32, 33, 34, 35bnj849 31530 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} ∈ V)
37 vex 3417 . . . . . . 7 𝑓 ∈ V
3837dmex 7361 . . . . . 6 dom 𝑓 ∈ V
39 fvex 6446 . . . . . 6 (𝑓𝑖) ∈ V
4038, 39iunex 7408 . . . . 5 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V
4140rgenw 3133 . . . 4 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V
42 iunexg 7404 . . . 4 (({𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} ∈ V ∧ ∀𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V) → 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V)
4336, 41, 42sylancl 580 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V)
4426, 43syl5eqel 2910 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V)
455, 44syl5eqel 2910 1 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  {cab 2811  wral 3117  wrex 3118  Vcvv 3414  [wsbc 3662  cdif 3795  c0 4144  {csn 4397   ciun 4740  dom cdm 5342  suc csuc 5965   Fn wfn 6118  cfv 6123  ωcom 7326   predc-bnj14 31292   FrSe w-bnj15 31296   trClc-bnj18 31298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-reg 8766  ax-inf2 8815
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-om 7327  df-1o 7826  df-bnj17 31291  df-bnj14 31293  df-bnj13 31295  df-bnj15 31297  df-bnj18 31299
This theorem is referenced by:  bnj1125  31595  bnj1136  31600  bnj1177  31609  bnj1413  31638  bnj1452  31655
  Copyright terms: Public domain W3C validator