Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj893 Structured version   Visualization version   GIF version

Theorem bnj893 33597
Description: Property of trCl. Under certain conditions, the transitive closure of 𝑋 in 𝐴 by 𝑅 is a set. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj893 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)

Proof of Theorem bnj893
Dummy variables 𝑓 𝑔 𝑖 𝑛 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 261 . . 3 ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 biid 261 . . 3 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 eqid 2733 . . 3 (ω ∖ {∅}) = (ω ∖ {∅})
4 eqid 2733 . . 3 {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}
51, 2, 3, 4bnj882 33595 . 2 trCl(𝑋, 𝐴, 𝑅) = 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖)
6 vex 3448 . . . . . . . . . . 11 𝑔 ∈ V
7 fveq1 6842 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅))
87eqeq1d 2735 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅)))
96, 8sbcie 3783 . . . . . . . . . 10 ([𝑔 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅))
109bicomi 223 . . . . . . . . 9 ((𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [𝑔 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
11 fveq1 6842 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓‘suc 𝑖) = (𝑔‘suc 𝑖))
12 fveq1 6842 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑖) = (𝑔𝑖))
1312iuneq1d 4982 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))
1411, 13eqeq12d 2749 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ((𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
1514imbi2d 341 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
1615ralbidv 3171 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
176, 16sbcie 3783 . . . . . . . . . 10 ([𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
1817bicomi 223 . . . . . . . . 9 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
194, 10, 18bnj873 33593 . . . . . . . 8 {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}
2019eleq2i 2826 . . . . . . 7 (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} ↔ 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))})
2120anbi1i 625 . . . . . 6 ((𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} ∧ 𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)) ↔ (𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} ∧ 𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)))
2221rexbii2 3090 . . . . 5 (∃𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖) ↔ ∃𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖))
2322abbii 2803 . . . 4 {𝑤 ∣ ∃𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)} = {𝑤 ∣ ∃𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)}
24 df-iun 4957 . . . 4 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) = {𝑤 ∣ ∃𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)}
25 df-iun 4957 . . . 4 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) = {𝑤 ∣ ∃𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)}
2623, 24, 253eqtr4i 2771 . . 3 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) = 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖)
27 biid 261 . . . . 5 ((𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅))
28 biid 261 . . . . 5 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
29 eqid 2733 . . . . 5 {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}
30 biid 261 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴𝑛 ∈ (ω ∖ {∅})) ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛 ∈ (ω ∖ {∅})))
31 biid 261 . . . . 5 ((𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
32 biid 261 . . . . 5 ([𝑧 / 𝑔](𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [𝑧 / 𝑔](𝑔‘∅) = pred(𝑋, 𝐴, 𝑅))
33 biid 261 . . . . 5 ([𝑧 / 𝑔]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑧 / 𝑔]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
34 biid 261 . . . . 5 ([𝑧 / 𝑔](𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝑧 / 𝑔](𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
35 biid 261 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) ↔ (𝑅 FrSe 𝐴𝑋𝐴))
3627, 28, 3, 29, 30, 31, 32, 33, 34, 35bnj849 33594 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} ∈ V)
37 vex 3448 . . . . . . 7 𝑓 ∈ V
3837dmex 7849 . . . . . 6 dom 𝑓 ∈ V
39 fvex 6856 . . . . . 6 (𝑓𝑖) ∈ V
4038, 39iunex 7902 . . . . 5 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V
4140rgenw 3065 . . . 4 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V
42 iunexg 7897 . . . 4 (({𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} ∈ V ∧ ∀𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V) → 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V)
4336, 41, 42sylancl 587 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V)
4426, 43eqeltrid 2838 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V)
455, 44eqeltrid 2838 1 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  {cab 2710  wral 3061  wrex 3070  Vcvv 3444  [wsbc 3740  cdif 3908  c0 4283  {csn 4587   ciun 4955  dom cdm 5634  suc csuc 6320   Fn wfn 6492  cfv 6497  ωcom 7803   predc-bnj14 33357   FrSe w-bnj15 33361   trClc-bnj18 33363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-reg 9533  ax-inf2 9582
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-om 7804  df-1o 8413  df-bnj17 33356  df-bnj14 33358  df-bnj13 33360  df-bnj15 33362  df-bnj18 33364
This theorem is referenced by:  bnj1125  33661  bnj1136  33666  bnj1177  33675  bnj1413  33704  bnj1452  33721
  Copyright terms: Public domain W3C validator