Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj893 Structured version   Visualization version   GIF version

Theorem bnj893 32195
Description: Property of trCl. Under certain conditions, the transitive closure of 𝑋 in 𝐴 by 𝑅 is a set. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj893 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)

Proof of Theorem bnj893
Dummy variables 𝑓 𝑔 𝑖 𝑛 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 263 . . 3 ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 biid 263 . . 3 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 eqid 2821 . . 3 (ω ∖ {∅}) = (ω ∖ {∅})
4 eqid 2821 . . 3 {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}
51, 2, 3, 4bnj882 32193 . 2 trCl(𝑋, 𝐴, 𝑅) = 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖)
6 vex 3497 . . . . . . . . . . 11 𝑔 ∈ V
7 fveq1 6663 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅))
87eqeq1d 2823 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅)))
96, 8sbcie 3811 . . . . . . . . . 10 ([𝑔 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅))
109bicomi 226 . . . . . . . . 9 ((𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [𝑔 / 𝑓](𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
11 fveq1 6663 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (𝑓‘suc 𝑖) = (𝑔‘suc 𝑖))
12 fveq1 6663 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑖) = (𝑔𝑖))
1312iuneq1d 4938 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))
1411, 13eqeq12d 2837 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ((𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
1514imbi2d 343 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
1615ralbidv 3197 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
176, 16sbcie 3811 . . . . . . . . . 10 ([𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
1817bicomi 226 . . . . . . . . 9 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑔 / 𝑓]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
194, 10, 18bnj873 32191 . . . . . . . 8 {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}
2019eleq2i 2904 . . . . . . 7 (𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} ↔ 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))})
2120anbi1i 625 . . . . . 6 ((𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} ∧ 𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)) ↔ (𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} ∧ 𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)))
2221rexbii2 3245 . . . . 5 (∃𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖) ↔ ∃𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖))
2322abbii 2886 . . . 4 {𝑤 ∣ ∃𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)} = {𝑤 ∣ ∃𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)}
24 df-iun 4913 . . . 4 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) = {𝑤 ∣ ∃𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)}
25 df-iun 4913 . . . 4 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) = {𝑤 ∣ ∃𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}𝑤 𝑖 ∈ dom 𝑓(𝑓𝑖)}
2623, 24, 253eqtr4i 2854 . . 3 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) = 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖)
27 biid 263 . . . . 5 ((𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅))
28 biid 263 . . . . 5 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
29 eqid 2821 . . . . 5 {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} = {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))}
30 biid 263 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴𝑛 ∈ (ω ∖ {∅})) ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛 ∈ (ω ∖ {∅})))
31 biid 263 . . . . 5 ((𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
32 biid 263 . . . . 5 ([𝑧 / 𝑔](𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ↔ [𝑧 / 𝑔](𝑔‘∅) = pred(𝑋, 𝐴, 𝑅))
33 biid 263 . . . . 5 ([𝑧 / 𝑔]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝑧 / 𝑔]𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))
34 biid 263 . . . . 5 ([𝑧 / 𝑔](𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝑧 / 𝑔](𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅))))
35 biid 263 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) ↔ (𝑅 FrSe 𝐴𝑋𝐴))
3627, 28, 3, 29, 30, 31, 32, 33, 34, 35bnj849 32192 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} ∈ V)
37 vex 3497 . . . . . . 7 𝑓 ∈ V
3837dmex 7610 . . . . . 6 dom 𝑓 ∈ V
39 fvex 6677 . . . . . 6 (𝑓𝑖) ∈ V
4038, 39iunex 7663 . . . . 5 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V
4140rgenw 3150 . . . 4 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V
42 iunexg 7658 . . . 4 (({𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} ∈ V ∧ ∀𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V) → 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V)
4336, 41, 42sylancl 588 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝑓 ∈ {𝑔 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑔 Fn 𝑛 ∧ (𝑔‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V)
4426, 43eqeltrid 2917 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖) ∈ V)
455, 44eqeltrid 2917 1 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  [wsbc 3771  cdif 3932  c0 4290  {csn 4560   ciun 4911  dom cdm 5549  suc csuc 6187   Fn wfn 6344  cfv 6349  ωcom 7574   predc-bnj14 31953   FrSe w-bnj15 31957   trClc-bnj18 31959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-reg 9050  ax-inf2 9098
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-om 7575  df-1o 8096  df-bnj17 31952  df-bnj14 31954  df-bnj13 31956  df-bnj15 31958  df-bnj18 31960
This theorem is referenced by:  bnj1125  32259  bnj1136  32264  bnj1177  32273  bnj1413  32302  bnj1452  32319
  Copyright terms: Public domain W3C validator