MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabsb Structured version   Visualization version   GIF version

Theorem brabsb 5492
Description: The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008.)
Hypothesis
Ref Expression
brabsb.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabsb (𝐴𝑅𝐵[𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brabsb
StepHypRef Expression
1 df-br 5110 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 brabsb.1 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
32eleq2i 2826 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
4 opelopabsb 5491 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
51, 3, 43bitri 297 1 (𝐴𝑅𝐵[𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wcel 2107  [wsbc 3743  cop 4596   class class class wbr 5109  {copab 5171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-br 5110  df-opab 5172
This theorem is referenced by:  eqerlem  8688  xpab  34361
  Copyright terms: Public domain W3C validator