MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabsb Structured version   Visualization version   GIF version

Theorem brabsb 5421
Description: The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008.)
Hypothesis
Ref Expression
brabsb.1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabsb (𝐴𝑅𝐵[𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brabsb
StepHypRef Expression
1 df-br 5063 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 brabsb.1 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
32eleq2i 2830 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
4 opelopabsb 5420 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
51, 3, 43bitri 300 1 (𝐴𝑅𝐵[𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  wcel 2111  [wsbc 3703  cop 4556   class class class wbr 5062  {copab 5124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5201  ax-nul 5208  ax-pr 5331
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3417  df-sbc 3704  df-dif 3878  df-un 3880  df-nul 4247  df-if 4449  df-sn 4551  df-pr 4553  df-op 4557  df-br 5063  df-opab 5125
This theorem is referenced by:  eqerlem  8434  xpab  33405
  Copyright terms: Public domain W3C validator