![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brabsb | Structured version Visualization version GIF version |
Description: The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008.) |
Ref | Expression |
---|---|
brabsb.1 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brabsb | ⊢ (𝐴𝑅𝐵 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | brabsb.1 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | 2 | eleq2i 2831 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
4 | opelopabsb 5540 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ (𝐴𝑅𝐵 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 [wsbc 3791 〈cop 4637 class class class wbr 5148 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 |
This theorem is referenced by: eqerlem 8779 xpab 35706 |
Copyright terms: Public domain | W3C validator |