MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brin Structured version   Visualization version   GIF version

Theorem brin 5126
Description: The intersection of two relations. (Contributed by FL, 7-Oct-2008.)
Assertion
Ref Expression
brin (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))

Proof of Theorem brin
StepHypRef Expression
1 elin 3903 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
2 df-br 5075 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆))
3 df-br 5075 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
4 df-br 5075 . . 3 (𝐴𝑆𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆)
53, 4anbi12i 627 . 2 ((𝐴𝑅𝐵𝐴𝑆𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
61, 2, 53bitr4i 303 1 (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  cin 3886  cop 4567   class class class wbr 5074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-br 5075
This theorem is referenced by:  brinxp2  5664  trin2  6028  poirr2  6029  dfpo2  6199  predtrss  6225  tpostpos  8062  erinxp  8580  sbthcl  8882  infxpenlem  9769  fpwwe2lem11  10397  fpwwe2  10399  isinv  17472  isffth2  17632  ffthf1o  17635  ffthoppc  17640  ffthres2c  17656  isunit  19899  opsrtoslem2  21263  posrasymb  31243  trleile  31249  satefvfmla1  33387  brtxp  34182  idsset  34192  dfon3  34194  elfix  34205  dffix2  34207  brcap  34242  funpartlem  34244  trer  34505  fneval  34541  brxrn  36504  brin2  36535  br1cossinres  36565  grumnud  41904
  Copyright terms: Public domain W3C validator