| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brin | Structured version Visualization version GIF version | ||
| Description: The intersection of two relations. (Contributed by FL, 7-Oct-2008.) |
| Ref | Expression |
|---|---|
| brin | ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3942 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∩ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 5120 | . 2 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∩ 𝑆)) | |
| 3 | df-br 5120 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 4 | df-br 5120 | . . 3 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∩ cin 3925 〈cop 4607 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-br 5120 |
| This theorem is referenced by: brinxp2 5732 trin2 6112 poirr2 6113 dfpo2 6285 predtrss 6311 tpostpos 8245 brinxper 8748 erinxp 8805 sbthcl 9109 infxpenlem 10027 fpwwe2lem11 10655 fpwwe2 10657 isinv 17773 isffth2 17931 ffthf1o 17934 ffthoppc 17939 ffthres2c 17955 isunit 20333 opsrtoslem2 22014 posrasymb 32945 trleile 32951 satefvfmla1 35447 brtxp 35898 idsset 35908 dfon3 35910 elfix 35921 dffix2 35923 brcap 35958 funpartlem 35960 trer 36334 fneval 36370 brcnvin 38388 brxrn 38392 brin2 38427 br1cossinres 38465 grumnud 44310 |
| Copyright terms: Public domain | W3C validator |