| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brin | Structured version Visualization version GIF version | ||
| Description: The intersection of two relations. (Contributed by FL, 7-Oct-2008.) |
| Ref | Expression |
|---|---|
| brin | ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3913 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∩ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 5090 | . 2 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∩ 𝑆)) | |
| 3 | df-br 5090 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 4 | df-br 5090 | . . 3 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∩ cin 3896 〈cop 4579 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-br 5090 |
| This theorem is referenced by: brinxp2 5692 trin2 6069 poirr2 6070 dfpo2 6243 predtrss 6269 tpostpos 8176 brinxper 8651 erinxp 8715 sbthcl 9012 infxpenlem 9904 fpwwe2lem11 10532 fpwwe2 10534 isinv 17667 isffth2 17825 ffthf1o 17828 ffthoppc 17833 ffthres2c 17849 isunit 20291 opsrtoslem2 21991 zsoring 28332 posrasymb 32948 trleile 32952 satefvfmla1 35469 brtxp 35922 idsset 35932 dfon3 35934 elfix 35945 dffix2 35947 brcap 35982 funpartlem 35984 trer 36358 fneval 36394 brcnvin 38406 brxrn 38410 brin2 38454 br1cossinres 38492 grumnud 44327 |
| Copyright terms: Public domain | W3C validator |