MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brin Structured version   Visualization version   GIF version

Theorem brin 5154
Description: The intersection of two relations. (Contributed by FL, 7-Oct-2008.)
Assertion
Ref Expression
brin (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))

Proof of Theorem brin
StepHypRef Expression
1 elin 3927 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
2 df-br 5103 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆))
3 df-br 5103 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
4 df-br 5103 . . 3 (𝐴𝑆𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆)
53, 4anbi12i 628 . 2 ((𝐴𝑅𝐵𝐴𝑆𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
61, 2, 53bitr4i 303 1 (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵𝐴𝑆𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  cin 3910  cop 4591   class class class wbr 5102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-in 3918  df-br 5103
This theorem is referenced by:  brinxp2  5709  trin2  6084  poirr2  6085  dfpo2  6257  predtrss  6283  tpostpos  8202  brinxper  8677  erinxp  8741  sbthcl  9040  infxpenlem  9942  fpwwe2lem11  10570  fpwwe2  10572  isinv  17698  isffth2  17856  ffthf1o  17859  ffthoppc  17864  ffthres2c  17880  isunit  20258  opsrtoslem2  21939  posrasymb  32864  trleile  32870  satefvfmla1  35385  brtxp  35841  idsset  35851  dfon3  35853  elfix  35864  dffix2  35866  brcap  35901  funpartlem  35903  trer  36277  fneval  36313  brcnvin  38325  brxrn  38329  brin2  38373  br1cossinres  38411  grumnud  44248
  Copyright terms: Public domain W3C validator