Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brin | Structured version Visualization version GIF version |
Description: The intersection of two relations. (Contributed by FL, 7-Oct-2008.) |
Ref | Expression |
---|---|
brin | ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3903 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∩ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
2 | df-br 5075 | . 2 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∩ 𝑆)) | |
3 | df-br 5075 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
4 | df-br 5075 | . . 3 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
5 | 3, 4 | anbi12i 627 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∩ cin 3886 〈cop 4567 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-br 5075 |
This theorem is referenced by: brinxp2 5664 trin2 6028 poirr2 6029 dfpo2 6199 predtrss 6225 tpostpos 8062 erinxp 8580 sbthcl 8882 infxpenlem 9769 fpwwe2lem11 10397 fpwwe2 10399 isinv 17472 isffth2 17632 ffthf1o 17635 ffthoppc 17640 ffthres2c 17656 isunit 19899 opsrtoslem2 21263 posrasymb 31243 trleile 31249 satefvfmla1 33387 brtxp 34182 idsset 34192 dfon3 34194 elfix 34205 dffix2 34207 brcap 34242 funpartlem 34244 trer 34505 fneval 34541 brxrn 36504 brin2 36535 br1cossinres 36565 grumnud 41904 |
Copyright terms: Public domain | W3C validator |