Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brin | Structured version Visualization version GIF version |
Description: The intersection of two relations. (Contributed by FL, 7-Oct-2008.) |
Ref | Expression |
---|---|
brin | ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3899 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∩ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
2 | df-br 5071 | . 2 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∩ 𝑆)) | |
3 | df-br 5071 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
4 | df-br 5071 | . . 3 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
5 | 3, 4 | anbi12i 626 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
6 | 1, 2, 5 | 3bitr4i 302 | 1 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∩ cin 3882 〈cop 4564 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-br 5071 |
This theorem is referenced by: brinxp2 5655 trin2 6017 poirr2 6018 dfpo2 6188 predtrss 6214 tpostpos 8033 erinxp 8538 sbthcl 8835 infxpenlem 9700 fpwwe2lem11 10328 fpwwe2 10330 isinv 17389 isffth2 17548 ffthf1o 17551 ffthoppc 17556 ffthres2c 17572 isunit 19814 opsrtoslem2 21173 posrasymb 31145 trleile 31151 satefvfmla1 33287 brtxp 34109 idsset 34119 dfon3 34121 elfix 34132 dffix2 34134 brcap 34169 funpartlem 34171 trer 34432 fneval 34468 brxrn 36431 brin2 36462 br1cossinres 36492 grumnud 41793 |
Copyright terms: Public domain | W3C validator |