Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brin | Structured version Visualization version GIF version |
Description: The intersection of two relations. (Contributed by FL, 7-Oct-2008.) |
Ref | Expression |
---|---|
brin | ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3875 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∩ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
2 | df-br 5034 | . 2 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∩ 𝑆)) | |
3 | df-br 5034 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
4 | df-br 5034 | . . 3 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
5 | 3, 4 | anbi12i 630 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
6 | 1, 2, 5 | 3bitr4i 307 | 1 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 ∈ wcel 2112 ∩ cin 3858 〈cop 4529 class class class wbr 5033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-in 3866 df-br 5034 |
This theorem is referenced by: brinxp2 5599 trin2 5956 poirr2 5957 tpostpos 7923 erinxp 8382 sbthcl 8661 infxpenlem 9466 fpwwe2lem11 10094 fpwwe2 10096 isinv 17082 isffth2 17238 ffthf1o 17241 ffthoppc 17246 ffthres2c 17262 isunit 19471 opsrtoslem2 20809 posrasymb 30759 trleile 30768 satefvfmla1 32896 dfpo2 33231 brtxp 33724 idsset 33734 dfon3 33736 elfix 33747 dffix2 33749 brcap 33784 funpartlem 33786 trer 34047 fneval 34083 brxrn 36059 brin2 36090 br1cossinres 36120 grumnud 41360 |
Copyright terms: Public domain | W3C validator |