![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcodir | Structured version Visualization version GIF version |
Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.) |
Ref | Expression |
---|---|
brcodir | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcog 5880 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵))) | |
2 | vex 3482 | . . . . . 6 ⊢ 𝑧 ∈ V | |
3 | brcnvg 5893 | . . . . . 6 ⊢ ((𝑧 ∈ V ∧ 𝐵 ∈ 𝑊) → (𝑧◡𝑅𝐵 ↔ 𝐵𝑅𝑧)) | |
4 | 2, 3 | mpan 690 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (𝑧◡𝑅𝐵 ↔ 𝐵𝑅𝑧)) |
5 | 4 | anbi2d 630 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ((𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ (𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ (𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
7 | 6 | exbidv 1919 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑧(𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
8 | 1, 7 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 ◡ccnv 5688 ∘ ccom 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cnv 5697 df-co 5698 |
This theorem is referenced by: codir 6143 |
Copyright terms: Public domain | W3C validator |