MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcodir Structured version   Visualization version   GIF version

Theorem brcodir 6095
Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
brcodir ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧𝐵𝑅𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝑅   𝑧,𝑉   𝑧,𝑊

Proof of Theorem brcodir
StepHypRef Expression
1 brcog 5833 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧𝑧𝑅𝐵)))
2 vex 3454 . . . . . 6 𝑧 ∈ V
3 brcnvg 5846 . . . . . 6 ((𝑧 ∈ V ∧ 𝐵𝑊) → (𝑧𝑅𝐵𝐵𝑅𝑧))
42, 3mpan 690 . . . . 5 (𝐵𝑊 → (𝑧𝑅𝐵𝐵𝑅𝑧))
54anbi2d 630 . . . 4 (𝐵𝑊 → ((𝐴𝑅𝑧𝑧𝑅𝐵) ↔ (𝐴𝑅𝑧𝐵𝑅𝑧)))
65adantl 481 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑅𝑧𝑧𝑅𝐵) ↔ (𝐴𝑅𝑧𝐵𝑅𝑧)))
76exbidv 1921 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑧(𝐴𝑅𝑧𝑧𝑅𝐵) ↔ ∃𝑧(𝐴𝑅𝑧𝐵𝑅𝑧)))
81, 7bitrd 279 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧𝐵𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  Vcvv 3450   class class class wbr 5110  ccnv 5640  ccom 5645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649  df-co 5650
This theorem is referenced by:  codir  6096
  Copyright terms: Public domain W3C validator