![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcodir | Structured version Visualization version GIF version |
Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.) |
Ref | Expression |
---|---|
brcodir | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcog 5492 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵))) | |
2 | vex 3388 | . . . . . 6 ⊢ 𝑧 ∈ V | |
3 | brcnvg 5505 | . . . . . 6 ⊢ ((𝑧 ∈ V ∧ 𝐵 ∈ 𝑊) → (𝑧◡𝑅𝐵 ↔ 𝐵𝑅𝑧)) | |
4 | 2, 3 | mpan 682 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (𝑧◡𝑅𝐵 ↔ 𝐵𝑅𝑧)) |
5 | 4 | anbi2d 623 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ((𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ (𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
6 | 5 | adantl 474 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ (𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
7 | 6 | exbidv 2017 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑧(𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
8 | 1, 7 | bitrd 271 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∃wex 1875 ∈ wcel 2157 Vcvv 3385 class class class wbr 4843 ◡ccnv 5311 ∘ ccom 5316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-cnv 5320 df-co 5321 |
This theorem is referenced by: codir 5734 |
Copyright terms: Public domain | W3C validator |