Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brcodir | Structured version Visualization version GIF version |
Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.) |
Ref | Expression |
---|---|
brcodir | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcog 5795 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵))) | |
2 | vex 3445 | . . . . . 6 ⊢ 𝑧 ∈ V | |
3 | brcnvg 5808 | . . . . . 6 ⊢ ((𝑧 ∈ V ∧ 𝐵 ∈ 𝑊) → (𝑧◡𝑅𝐵 ↔ 𝐵𝑅𝑧)) | |
4 | 2, 3 | mpan 687 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (𝑧◡𝑅𝐵 ↔ 𝐵𝑅𝑧)) |
5 | 4 | anbi2d 629 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ((𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ (𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
6 | 5 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ (𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
7 | 6 | exbidv 1923 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑧(𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
8 | 1, 7 | bitrd 278 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1780 ∈ wcel 2105 Vcvv 3441 class class class wbr 5087 ◡ccnv 5606 ∘ ccom 5611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-cnv 5615 df-co 5616 |
This theorem is referenced by: codir 6047 |
Copyright terms: Public domain | W3C validator |