| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcodir | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| Ref | Expression |
|---|---|
| brcodir | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcog 5804 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵))) | |
| 2 | vex 3438 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 3 | brcnvg 5817 | . . . . . 6 ⊢ ((𝑧 ∈ V ∧ 𝐵 ∈ 𝑊) → (𝑧◡𝑅𝐵 ↔ 𝐵𝑅𝑧)) | |
| 4 | 2, 3 | mpan 690 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → (𝑧◡𝑅𝐵 ↔ 𝐵𝑅𝑧)) |
| 5 | 4 | anbi2d 630 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ((𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ (𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ (𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
| 7 | 6 | exbidv 1922 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑧(𝐴𝑅𝑧 ∧ 𝑧◡𝑅𝐵) ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
| 8 | 1, 7 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(◡𝑅 ∘ 𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧 ∧ 𝐵𝑅𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2110 Vcvv 3434 class class class wbr 5089 ◡ccnv 5613 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-cnv 5622 df-co 5623 |
| This theorem is referenced by: codir 6064 |
| Copyright terms: Public domain | W3C validator |