Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brcog | Structured version Visualization version GIF version |
Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.) |
Ref | Expression |
---|---|
brcog | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5073 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦𝐷𝑥 ↔ 𝐴𝐷𝑥)) | |
2 | breq2 5074 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑥𝐶𝑧 ↔ 𝑥𝐶𝐵)) | |
3 | 1, 2 | bi2anan9 635 | . . 3 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → ((𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧) ↔ (𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
4 | 3 | exbidv 1925 | . 2 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → (∃𝑥(𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
5 | df-co 5589 | . 2 ⊢ (𝐶 ∘ 𝐷) = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧)} | |
6 | 4, 5 | brabga 5440 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 class class class wbr 5070 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-co 5589 |
This theorem is referenced by: opelco2g 5765 brcogw 5766 brco 5768 brcodir 6013 predtrss 6214 brtpos2 8019 ertr 8471 relexpindlem 14702 znleval 20674 fcoinvbr 30848 opelco3 33655 brxrn 36431 eqvreltr 36647 frege124d 41258 funressnfv 44424 dfatcolem 44634 |
Copyright terms: Public domain | W3C validator |