![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcog | Structured version Visualization version GIF version |
Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.) |
Ref | Expression |
---|---|
brcog | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5151 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦𝐷𝑥 ↔ 𝐴𝐷𝑥)) | |
2 | breq2 5152 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑥𝐶𝑧 ↔ 𝑥𝐶𝐵)) | |
3 | 1, 2 | bi2anan9 638 | . . 3 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → ((𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧) ↔ (𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
4 | 3 | exbidv 1919 | . 2 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → (∃𝑥(𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
5 | df-co 5698 | . 2 ⊢ (𝐶 ∘ 𝐷) = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧)} | |
6 | 4, 5 | brabga 5544 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 class class class wbr 5148 ∘ ccom 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-co 5698 |
This theorem is referenced by: opelco2g 5881 brcogw 5882 brco 5884 brcodir 6142 predtrss 6345 brtpos2 8256 ertr 8759 relexpindlem 15099 znleval 21591 fcoinvbr 32625 opelco3 35756 brxrn 38356 eqvreltr 38589 frege124d 43751 funressnfv 46993 dfatcolem 47205 |
Copyright terms: Public domain | W3C validator |