![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcog | Structured version Visualization version GIF version |
Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.) |
Ref | Expression |
---|---|
brcog | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5169 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦𝐷𝑥 ↔ 𝐴𝐷𝑥)) | |
2 | breq2 5170 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑥𝐶𝑧 ↔ 𝑥𝐶𝐵)) | |
3 | 1, 2 | bi2anan9 637 | . . 3 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → ((𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧) ↔ (𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
4 | 3 | exbidv 1920 | . 2 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → (∃𝑥(𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
5 | df-co 5709 | . 2 ⊢ (𝐶 ∘ 𝐷) = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧)} | |
6 | 4, 5 | brabga 5553 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 class class class wbr 5166 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-co 5709 |
This theorem is referenced by: opelco2g 5892 brcogw 5893 brco 5895 brcodir 6151 predtrss 6354 brtpos2 8273 ertr 8778 relexpindlem 15112 znleval 21596 fcoinvbr 32627 opelco3 35738 brxrn 38330 eqvreltr 38563 frege124d 43723 funressnfv 46958 dfatcolem 47170 |
Copyright terms: Public domain | W3C validator |