MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcog Structured version   Visualization version   GIF version

Theorem brcog 5775
Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.)
Assertion
Ref Expression
brcog ((𝐴𝑉𝐵𝑊) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem brcog
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5077 . . . 4 (𝑦 = 𝐴 → (𝑦𝐷𝑥𝐴𝐷𝑥))
2 breq2 5078 . . . 4 (𝑧 = 𝐵 → (𝑥𝐶𝑧𝑥𝐶𝐵))
31, 2bi2anan9 636 . . 3 ((𝑦 = 𝐴𝑧 = 𝐵) → ((𝑦𝐷𝑥𝑥𝐶𝑧) ↔ (𝐴𝐷𝑥𝑥𝐶𝐵)))
43exbidv 1924 . 2 ((𝑦 = 𝐴𝑧 = 𝐵) → (∃𝑥(𝑦𝐷𝑥𝑥𝐶𝑧) ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
5 df-co 5598 . 2 (𝐶𝐷) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐷𝑥𝑥𝐶𝑧)}
64, 5brabga 5447 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106   class class class wbr 5074  ccom 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-co 5598
This theorem is referenced by:  opelco2g  5776  brcogw  5777  brco  5779  brcodir  6024  predtrss  6225  brtpos2  8048  ertr  8513  relexpindlem  14774  znleval  20762  fcoinvbr  30947  opelco3  33749  brxrn  36504  eqvreltr  36720  frege124d  41369  funressnfv  44537  dfatcolem  44747
  Copyright terms: Public domain W3C validator