![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcog | Structured version Visualization version GIF version |
Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.) |
Ref | Expression |
---|---|
brcog | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5109 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦𝐷𝑥 ↔ 𝐴𝐷𝑥)) | |
2 | breq2 5110 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑥𝐶𝑧 ↔ 𝑥𝐶𝐵)) | |
3 | 1, 2 | bi2anan9 638 | . . 3 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → ((𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧) ↔ (𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
4 | 3 | exbidv 1925 | . 2 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → (∃𝑥(𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
5 | df-co 5643 | . 2 ⊢ (𝐶 ∘ 𝐷) = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦𝐷𝑥 ∧ 𝑥𝐶𝑧)} | |
6 | 4, 5 | brabga 5492 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 class class class wbr 5106 ∘ ccom 5638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-co 5643 |
This theorem is referenced by: opelco2g 5824 brcogw 5825 brco 5827 brcodir 6074 predtrss 6277 brtpos2 8164 ertr 8666 relexpindlem 14954 znleval 20977 fcoinvbr 31572 opelco3 34405 brxrn 36882 eqvreltr 37115 frege124d 42121 funressnfv 45363 dfatcolem 45573 |
Copyright terms: Public domain | W3C validator |