MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  codir Structured version   Visualization version   GIF version

Theorem codir 6025
Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
codir ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧

Proof of Theorem codir
StepHypRef Expression
1 opelxp 5625 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2 df-br 5075 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))
3 brcodir 6024 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
43el2v 3440 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
52, 4bitr3i 276 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
61, 5imbi12i 351 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ((𝑥𝐴𝑦𝐵) → ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
762albii 1823 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
8 relxp 5607 . . 3 Rel (𝐴 × 𝐵)
9 ssrel 5693 . . 3 (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))))
108, 9ax-mp 5 . 2 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)))
11 r2al 3118 . 2 (∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
127, 10, 113bitr4i 303 1 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wex 1782  wcel 2106  wral 3064  Vcvv 3432  wss 3887  cop 4567   class class class wbr 5074   × cxp 5587  ccnv 5588  ccom 5593  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598
This theorem is referenced by:  dirge  18321  filnetlem3  34569
  Copyright terms: Public domain W3C validator