| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > codir | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| codir | ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5695 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | df-br 5125 | . . . . 5 ⊢ (𝑥(◡𝑅 ∘ 𝑅)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)) | |
| 3 | brcodir 6113 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(◡𝑅 ∘ 𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) | |
| 4 | 3 | el2v 3471 | . . . . 5 ⊢ (𝑥(◡𝑅 ∘ 𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
| 5 | 2, 4 | bitr3i 277 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅) ↔ ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
| 6 | 1, 5 | imbi12i 350 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) |
| 7 | 6 | 2albii 1820 | . 2 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) |
| 8 | relxp 5677 | . . 3 ⊢ Rel (𝐴 × 𝐵) | |
| 9 | ssrel 5766 | . . 3 ⊢ (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅)))) | |
| 10 | 8, 9 | ax-mp 5 | . 2 ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 〈𝑥, 𝑦〉 ∈ (◡𝑅 ∘ 𝑅))) |
| 11 | r2al 3181 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧))) | |
| 12 | 7, 10, 11 | 3bitr4i 303 | 1 ⊢ ((𝐴 × 𝐵) ⊆ (◡𝑅 ∘ 𝑅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∃𝑧(𝑥𝑅𝑧 ∧ 𝑦𝑅𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ⊆ wss 3931 〈cop 4612 class class class wbr 5124 × cxp 5657 ◡ccnv 5658 ∘ ccom 5663 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 |
| This theorem is referenced by: dirge 18618 filnetlem3 36403 |
| Copyright terms: Public domain | W3C validator |