Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabgaf Structured version   Visualization version   GIF version

Theorem brabgaf 32620
Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) (Revised by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
brabgaf.0 𝑥𝜓
brabgaf.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
brabgaf.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabgaf ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem brabgaf
StepHypRef Expression
1 df-br 5144 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 brabgaf.2 . . . 4 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
32eleq2i 2833 . . 3 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
41, 3bitri 275 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
5 elopab 5532 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
6 elisset 2823 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
7 elisset 2823 . . . 4 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
8 exdistrv 1955 . . . . 5 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
9 nfe1 2150 . . . . . . 7 𝑥𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
10 brabgaf.0 . . . . . . 7 𝑥𝜓
119, 10nfbi 1903 . . . . . 6 𝑥(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)
12 nfe1 2150 . . . . . . . . 9 𝑦𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1312nfex 2324 . . . . . . . 8 𝑦𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
14 nfv 1914 . . . . . . . 8 𝑦𝜓
1513, 14nfbi 1903 . . . . . . 7 𝑦(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)
16 opeq12 4875 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
17 copsexgw 5495 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1817eqcoms 2745 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1916, 18syl 17 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
20 brabgaf.1 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
2119, 20bitr3d 281 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
2215, 21exlimi 2217 . . . . . 6 (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
2311, 22exlimi 2217 . . . . 5 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
248, 23sylbir 235 . . . 4 ((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
256, 7, 24syl2an 596 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
265, 25bitrid 283 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓))
274, 26bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wnf 1783  wcel 2108  cop 4632   class class class wbr 5143  {copab 5205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206
This theorem is referenced by:  fmptcof2  32667
  Copyright terms: Public domain W3C validator