Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabgaf Structured version   Visualization version   GIF version

Theorem brabgaf 29997
Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.) (Revised by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
brabgaf.0 𝑥𝜓
brabgaf.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
brabgaf.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brabgaf ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝑅(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem brabgaf
StepHypRef Expression
1 df-br 4887 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 brabgaf.2 . . . 4 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
32eleq2i 2850 . . 3 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
41, 3bitri 267 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
5 elopab 5220 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
6 elisset 3416 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
7 elisset 3416 . . . 4 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
8 exdistrv 1998 . . . . 5 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
9 nfe1 2143 . . . . . . 7 𝑥𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
10 brabgaf.0 . . . . . . 7 𝑥𝜓
119, 10nfbi 1950 . . . . . 6 𝑥(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)
12 nfe1 2143 . . . . . . . . 9 𝑦𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
1312nfex 2299 . . . . . . . 8 𝑦𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
14 nfv 1957 . . . . . . . 8 𝑦𝜓
1513, 14nfbi 1950 . . . . . . 7 𝑦(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)
16 opeq12 4638 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
17 copsexg 5187 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1817eqcoms 2785 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1916, 18syl 17 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
20 brabgaf.1 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
2119, 20bitr3d 273 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
2215, 21exlimi 2202 . . . . . 6 (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
2311, 22exlimi 2202 . . . . 5 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
248, 23sylbir 227 . . . 4 ((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
256, 7, 24syl2an 589 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
265, 25syl5bb 275 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓))
274, 26syl5bb 275 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wex 1823  wnf 1827  wcel 2106  cop 4403   class class class wbr 4886  {copab 4948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-rab 3098  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-br 4887  df-opab 4949
This theorem is referenced by:  fmptcof2  30036
  Copyright terms: Public domain W3C validator