![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brssrid | Structured version Visualization version GIF version |
Description: Any set is a subset of itself. (Contributed by Peter Mazsa, 1-Aug-2019.) |
Ref | Expression |
---|---|
brssrid | ⊢ (𝐴 ∈ 𝑉 → 𝐴 S 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4021 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | brssr 38497 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 S 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 S 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3966 class class class wbr 5151 S cssr 38179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-ssr 38494 |
This theorem is referenced by: issetssr 38499 |
Copyright terms: Public domain | W3C validator |