![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brssrid | Structured version Visualization version GIF version |
Description: Any set is a subset of itself. (Contributed by Peter Mazsa, 1-Aug-2019.) |
Ref | Expression |
---|---|
brssrid | ⊢ (𝐴 ∈ 𝑉 → 𝐴 S 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4001 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | brssr 38212 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 S 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 S 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ⊆ wss 3946 class class class wbr 5145 S cssr 37892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5146 df-opab 5208 df-xp 5680 df-rel 5681 df-ssr 38209 |
This theorem is referenced by: issetssr 38214 |
Copyright terms: Public domain | W3C validator |