Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brssrid Structured version   Visualization version   GIF version

Theorem brssrid 38406
Description: Any set is a subset of itself. (Contributed by Peter Mazsa, 1-Aug-2019.)
Assertion
Ref Expression
brssrid (𝐴𝑉𝐴 S 𝐴)

Proof of Theorem brssrid
StepHypRef Expression
1 ssid 4025 . 2 𝐴𝐴
2 brssr 38405 . 2 (𝐴𝑉 → (𝐴 S 𝐴𝐴𝐴))
31, 2mpbiri 258 1 (𝐴𝑉𝐴 S 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2103  wss 3970   class class class wbr 5169   S cssr 38086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5170  df-opab 5232  df-xp 5705  df-rel 5706  df-ssr 38402
This theorem is referenced by:  issetssr  38407
  Copyright terms: Public domain W3C validator