![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caov411 | Structured version Visualization version GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
caov.1 | ⊢ 𝐴 ∈ V |
caov.2 | ⊢ 𝐵 ∈ V |
caov.3 | ⊢ 𝐶 ∈ V |
caov.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
caov.ass | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
caov.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
caov411 | ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caov.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | caov.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | caov.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | caov.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
5 | caov.ass | . . . 4 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
6 | 1, 2, 3, 4, 5 | caov31 7635 | . . 3 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) |
7 | 6 | oveq1i 7418 | . 2 ⊢ (((𝐴𝐹𝐵)𝐹𝐶)𝐹𝐷) = (((𝐶𝐹𝐵)𝐹𝐴)𝐹𝐷) |
8 | ovex 7441 | . . 3 ⊢ (𝐴𝐹𝐵) ∈ V | |
9 | caov.4 | . . 3 ⊢ 𝐷 ∈ V | |
10 | 8, 3, 9, 5 | caovass 7606 | . 2 ⊢ (((𝐴𝐹𝐵)𝐹𝐶)𝐹𝐷) = ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) |
11 | ovex 7441 | . . 3 ⊢ (𝐶𝐹𝐵) ∈ V | |
12 | 11, 1, 9, 5 | caovass 7606 | . 2 ⊢ (((𝐶𝐹𝐵)𝐹𝐴)𝐹𝐷) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)) |
13 | 7, 10, 12 | 3eqtr3i 2768 | 1 ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 (class class class)co 7408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 |
This theorem is referenced by: ecopovtrn 8813 distrnq 10955 lterpq 10964 ltanq 10965 prlem936 11041 |
Copyright terms: Public domain | W3C validator |