Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caov411 | Structured version Visualization version GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
caov.1 | ⊢ 𝐴 ∈ V |
caov.2 | ⊢ 𝐵 ∈ V |
caov.3 | ⊢ 𝐶 ∈ V |
caov.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
caov.ass | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
caov.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
caov411 | ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caov.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | caov.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | caov.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | caov.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
5 | caov.ass | . . . 4 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
6 | 1, 2, 3, 4, 5 | caov31 7533 | . . 3 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) |
7 | 6 | oveq1i 7317 | . 2 ⊢ (((𝐴𝐹𝐵)𝐹𝐶)𝐹𝐷) = (((𝐶𝐹𝐵)𝐹𝐴)𝐹𝐷) |
8 | ovex 7340 | . . 3 ⊢ (𝐴𝐹𝐵) ∈ V | |
9 | caov.4 | . . 3 ⊢ 𝐷 ∈ V | |
10 | 8, 3, 9, 5 | caovass 7504 | . 2 ⊢ (((𝐴𝐹𝐵)𝐹𝐶)𝐹𝐷) = ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) |
11 | ovex 7340 | . . 3 ⊢ (𝐶𝐹𝐵) ∈ V | |
12 | 11, 1, 9, 5 | caovass 7504 | . 2 ⊢ (((𝐶𝐹𝐵)𝐹𝐴)𝐹𝐷) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)) |
13 | 7, 10, 12 | 3eqtr3i 2772 | 1 ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 Vcvv 3437 (class class class)co 7307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 |
This theorem is referenced by: ecopovtrn 8640 distrnq 10763 lterpq 10772 ltanq 10773 prlem936 10849 |
Copyright terms: Public domain | W3C validator |