![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caov411 | Structured version Visualization version GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
caov.1 | ⊢ 𝐴 ∈ V |
caov.2 | ⊢ 𝐵 ∈ V |
caov.3 | ⊢ 𝐶 ∈ V |
caov.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
caov.ass | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
caov.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
caov411 | ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caov.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | caov.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | caov.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | caov.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
5 | caov.ass | . . . 4 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
6 | 1, 2, 3, 4, 5 | caov31 7669 | . . 3 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) |
7 | 6 | oveq1i 7448 | . 2 ⊢ (((𝐴𝐹𝐵)𝐹𝐶)𝐹𝐷) = (((𝐶𝐹𝐵)𝐹𝐴)𝐹𝐷) |
8 | ovex 7471 | . . 3 ⊢ (𝐴𝐹𝐵) ∈ V | |
9 | caov.4 | . . 3 ⊢ 𝐷 ∈ V | |
10 | 8, 3, 9, 5 | caovass 7640 | . 2 ⊢ (((𝐴𝐹𝐵)𝐹𝐶)𝐹𝐷) = ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) |
11 | ovex 7471 | . . 3 ⊢ (𝐶𝐹𝐵) ∈ V | |
12 | 11, 1, 9, 5 | caovass 7640 | . 2 ⊢ (((𝐶𝐹𝐵)𝐹𝐴)𝐹𝐷) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)) |
13 | 7, 10, 12 | 3eqtr3i 2773 | 1 ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐶𝐹𝐵)𝐹(𝐴𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3481 (class class class)co 7438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5315 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-ov 7441 |
This theorem is referenced by: ecopovtrn 8868 distrnq 11008 lterpq 11017 ltanq 11018 prlem936 11094 |
Copyright terms: Public domain | W3C validator |