Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caov12 | Structured version Visualization version GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
caov.1 | ⊢ 𝐴 ∈ V |
caov.2 | ⊢ 𝐵 ∈ V |
caov.3 | ⊢ 𝐶 ∈ V |
caov.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
caov.ass | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
Ref | Expression |
---|---|
caov12 | ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caov.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | caov.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | caov.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
4 | 1, 2, 3 | caovcom 7447 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
5 | 4 | oveq1i 7265 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐵𝐹𝐴)𝐹𝐶) |
6 | caov.3 | . . 3 ⊢ 𝐶 ∈ V | |
7 | caov.ass | . . 3 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
8 | 1, 2, 6, 7 | caovass 7450 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) |
9 | 2, 1, 6, 7 | caovass 7450 | . 2 ⊢ ((𝐵𝐹𝐴)𝐹𝐶) = (𝐵𝐹(𝐴𝐹𝐶)) |
10 | 5, 8, 9 | 3eqtr3i 2774 | 1 ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: caov31 7479 caov4 7481 caovmo 7487 distrnq 10648 ltaddnq 10661 ltexnq 10662 1idpr 10716 prlem934 10720 prlem936 10734 mulcmpblnrlem 10757 ltsosr 10781 0idsr 10784 1idsr 10785 recexsrlem 10790 mulgt0sr 10792 axmulass 10844 |
Copyright terms: Public domain | W3C validator |