Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caov12 | Structured version Visualization version GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
caov.1 | ⊢ 𝐴 ∈ V |
caov.2 | ⊢ 𝐵 ∈ V |
caov.3 | ⊢ 𝐶 ∈ V |
caov.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
caov.ass | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
Ref | Expression |
---|---|
caov12 | ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caov.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | caov.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | caov.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
4 | 1, 2, 3 | caovcom 7469 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
5 | 4 | oveq1i 7285 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐵𝐹𝐴)𝐹𝐶) |
6 | caov.3 | . . 3 ⊢ 𝐶 ∈ V | |
7 | caov.ass | . . 3 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
8 | 1, 2, 6, 7 | caovass 7472 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) |
9 | 2, 1, 6, 7 | caovass 7472 | . 2 ⊢ ((𝐵𝐹𝐴)𝐹𝐶) = (𝐵𝐹(𝐴𝐹𝐶)) |
10 | 5, 8, 9 | 3eqtr3i 2774 | 1 ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: caov31 7501 caov4 7503 caovmo 7509 distrnq 10717 ltaddnq 10730 ltexnq 10731 1idpr 10785 prlem934 10789 prlem936 10803 mulcmpblnrlem 10826 ltsosr 10850 0idsr 10853 1idsr 10854 recexsrlem 10859 mulgt0sr 10861 axmulass 10913 |
Copyright terms: Public domain | W3C validator |