| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caov12 | Structured version Visualization version GIF version | ||
| Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) |
| Ref | Expression |
|---|---|
| caov.1 | ⊢ 𝐴 ∈ V |
| caov.2 | ⊢ 𝐵 ∈ V |
| caov.3 | ⊢ 𝐶 ∈ V |
| caov.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
| caov.ass | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
| Ref | Expression |
|---|---|
| caov12 | ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caov.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | caov.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | caov.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
| 4 | 1, 2, 3 | caovcom 7546 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
| 5 | 4 | oveq1i 7359 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐵𝐹𝐴)𝐹𝐶) |
| 6 | caov.3 | . . 3 ⊢ 𝐶 ∈ V | |
| 7 | caov.ass | . . 3 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
| 8 | 1, 2, 6, 7 | caovass 7549 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) |
| 9 | 2, 1, 6, 7 | caovass 7549 | . 2 ⊢ ((𝐵𝐹𝐴)𝐹𝐶) = (𝐵𝐹(𝐴𝐹𝐶)) |
| 10 | 5, 8, 9 | 3eqtr3i 2760 | 1 ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: caov31 7578 caov4 7580 caovmo 7586 distrnq 10855 ltaddnq 10868 ltexnq 10869 1idpr 10923 prlem934 10927 prlem936 10941 mulcmpblnrlem 10964 ltsosr 10988 0idsr 10991 1idsr 10992 recexsrlem 10997 mulgt0sr 10999 axmulass 11051 |
| Copyright terms: Public domain | W3C validator |