MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov12 Structured version   Visualization version   GIF version

Theorem caov12 7562
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1 𝐴 ∈ V
caov.2 𝐵 ∈ V
caov.3 𝐶 ∈ V
caov.com (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
caov.ass ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
Assertion
Ref Expression
caov12 (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem caov12
StepHypRef Expression
1 caov.1 . . . 4 𝐴 ∈ V
2 caov.2 . . . 4 𝐵 ∈ V
3 caov.com . . . 4 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
41, 2, 3caovcom 7531 . . 3 (𝐴𝐹𝐵) = (𝐵𝐹𝐴)
54oveq1i 7347 . 2 ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐵𝐹𝐴)𝐹𝐶)
6 caov.3 . . 3 𝐶 ∈ V
7 caov.ass . . 3 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
81, 2, 6, 7caovass 7534 . 2 ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
92, 1, 6, 7caovass 7534 . 2 ((𝐵𝐹𝐴)𝐹𝐶) = (𝐵𝐹(𝐴𝐹𝐶))
105, 8, 93eqtr3i 2772 1 (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  Vcvv 3441  (class class class)co 7337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-iota 6431  df-fv 6487  df-ov 7340
This theorem is referenced by:  caov31  7563  caov4  7565  caovmo  7571  distrnq  10818  ltaddnq  10831  ltexnq  10832  1idpr  10886  prlem934  10890  prlem936  10904  mulcmpblnrlem  10927  ltsosr  10951  0idsr  10954  1idsr  10955  recexsrlem  10960  mulgt0sr  10962  axmulass  11014
  Copyright terms: Public domain W3C validator