MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov32 Structured version   Visualization version   GIF version

Theorem caov32 7189
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1 𝐴 ∈ V
caov.2 𝐵 ∈ V
caov.3 𝐶 ∈ V
caov.com (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
caov.ass ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
Assertion
Ref Expression
caov32 ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem caov32
StepHypRef Expression
1 caov.2 . . . 4 𝐵 ∈ V
2 caov.3 . . . 4 𝐶 ∈ V
3 caov.com . . . 4 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
41, 2, 3caovcom 7159 . . 3 (𝐵𝐹𝐶) = (𝐶𝐹𝐵)
54oveq2i 6985 . 2 (𝐴𝐹(𝐵𝐹𝐶)) = (𝐴𝐹(𝐶𝐹𝐵))
6 caov.1 . . 3 𝐴 ∈ V
7 caov.ass . . 3 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
86, 1, 2, 7caovass 7162 . 2 ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
96, 2, 1, 7caovass 7162 . 2 ((𝐴𝐹𝐶)𝐹𝐵) = (𝐴𝐹(𝐶𝐹𝐵))
105, 8, 93eqtr4i 2805 1 ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1508  wcel 2051  Vcvv 3408  (class class class)co 6974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2743
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-iota 6149  df-fv 6193  df-ov 6977
This theorem is referenced by:  caov31  7191  addassnq  10176  ltexprlem7  10260  mulcmpblnrlem  10288  recexsrlem  10321  mulgt0sr  10323
  Copyright terms: Public domain W3C validator