MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcn2 Structured version   Visualization version   GIF version

Theorem climcn2 15154
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn2.1 𝑍 = (ℤ𝑀)
climcn2.2 (𝜑𝑀 ∈ ℤ)
climcn2.3a (𝜑𝐴𝐶)
climcn2.3b (𝜑𝐵𝐷)
climcn2.4 ((𝜑 ∧ (𝑢𝐶𝑣𝐷)) → (𝑢𝐹𝑣) ∈ ℂ)
climcn2.5a (𝜑𝐺𝐴)
climcn2.5b (𝜑𝐻𝐵)
climcn2.6 (𝜑𝐾𝑊)
climcn2.7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
climcn2.8a ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐶)
climcn2.8b ((𝜑𝑘𝑍) → (𝐻𝑘) ∈ 𝐷)
climcn2.9 ((𝜑𝑘𝑍) → (𝐾𝑘) = ((𝐺𝑘)𝐹(𝐻𝑘)))
Assertion
Ref Expression
climcn2 (𝜑𝐾 ⇝ (𝐴𝐹𝐵))
Distinct variable groups:   𝑢,𝑘,𝑣,𝐶   𝐷,𝑘,𝑢,𝑣   𝑦,𝑘,𝑧,𝐻,𝑣   𝑥,𝑘,𝜑,𝑢,𝑦,𝑧,𝑣   𝐴,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝐺,𝑢,𝑣,𝑦,𝑧   𝑘,𝐾,𝑥   𝑘,𝑍,𝑦,𝑧   𝐵,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝐹,𝑢,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)   𝐺(𝑥)   𝐻(𝑥,𝑢)   𝐾(𝑦,𝑧,𝑣,𝑢)   𝑀(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘)   𝑍(𝑥,𝑣,𝑢)

Proof of Theorem climcn2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climcn2.7 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
2 climcn2.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
3 climcn2.2 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
43adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑀 ∈ ℤ)
5 simprl 771 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
6 eqidd 2738 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
7 climcn2.5a . . . . . . . . . 10 (𝜑𝐺𝐴)
87adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐺𝐴)
92, 4, 5, 6, 8climi2 15072 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
10 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
11 eqidd 2738 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐻𝑘) = (𝐻𝑘))
12 climcn2.5b . . . . . . . . . 10 (𝜑𝐻𝐵)
1312adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐻𝐵)
142, 4, 10, 11, 13climi2 15072 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐻𝑘) − 𝐵)) < 𝑧)
152rexanuz2 14913 . . . . . . . 8 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
169, 14, 15sylanbrc 586 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
172uztrn2 12457 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 climcn2.8a . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐶)
19 climcn2.8b . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐻𝑘) ∈ 𝐷)
20 fvoveq1 7236 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐺𝑘) → (abs‘(𝑢𝐴)) = (abs‘((𝐺𝑘) − 𝐴)))
2120breq1d 5063 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐺𝑘) → ((abs‘(𝑢𝐴)) < 𝑦 ↔ (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
2221anbi1d 633 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐺𝑘) → (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧)))
23 oveq1 7220 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐺𝑘) → (𝑢𝐹𝑣) = ((𝐺𝑘)𝐹𝑣))
2423fvoveq1d 7235 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐺𝑘) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) = (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))))
2524breq1d 5063 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐺𝑘) → ((abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥 ↔ (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
2622, 25imbi12d 348 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝐺𝑘) → ((((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) ↔ (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)))
27 fvoveq1 7236 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐻𝑘) → (abs‘(𝑣𝐵)) = (abs‘((𝐻𝑘) − 𝐵)))
2827breq1d 5063 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐻𝑘) → ((abs‘(𝑣𝐵)) < 𝑧 ↔ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
2928anbi2d 632 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐻𝑘) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧)))
30 oveq2 7221 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐻𝑘) → ((𝐺𝑘)𝐹𝑣) = ((𝐺𝑘)𝐹(𝐻𝑘)))
3130fvoveq1d 7235 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐻𝑘) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) = (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))))
3231breq1d 5063 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐻𝑘) → ((abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥 ↔ (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
3329, 32imbi12d 348 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝐻𝑘) → ((((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) ↔ (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
3426, 33rspc2v 3547 . . . . . . . . . . . . . . . 16 (((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
3518, 19, 34syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
3635imp 410 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
3736an32s 652 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑘𝑍) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
3817, 37sylan2 596 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
3938anassrs 471 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4039ralimdva 3100 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4140reximdva 3193 . . . . . . . . 9 ((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4241ex 416 . . . . . . . 8 (𝜑 → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4342adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4416, 43mpid 44 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4544rexlimdvva 3213 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4645adantr 484 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
471, 46mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)
4847ralrimiva 3105 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)
49 climcn2.6 . . 3 (𝜑𝐾𝑊)
50 climcn2.9 . . 3 ((𝜑𝑘𝑍) → (𝐾𝑘) = ((𝐺𝑘)𝐹(𝐻𝑘)))
51 climcn2.4 . . . 4 ((𝜑 ∧ (𝑢𝐶𝑣𝐷)) → (𝑢𝐹𝑣) ∈ ℂ)
52 climcn2.3a . . . 4 (𝜑𝐴𝐶)
53 climcn2.3b . . . 4 (𝜑𝐵𝐷)
5451, 52, 53caovcld 7401 . . 3 (𝜑 → (𝐴𝐹𝐵) ∈ ℂ)
5518, 19jca 515 . . . 4 ((𝜑𝑘𝑍) → ((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷))
5651ralrimivva 3112 . . . . 5 (𝜑 → ∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ)
5756adantr 484 . . . 4 ((𝜑𝑘𝑍) → ∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ)
5823eleq1d 2822 . . . . 5 (𝑢 = (𝐺𝑘) → ((𝑢𝐹𝑣) ∈ ℂ ↔ ((𝐺𝑘)𝐹𝑣) ∈ ℂ))
5930eleq1d 2822 . . . . 5 (𝑣 = (𝐻𝑘) → (((𝐺𝑘)𝐹𝑣) ∈ ℂ ↔ ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ))
6058, 59rspc2v 3547 . . . 4 (((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷) → (∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ → ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ))
6155, 57, 60sylc 65 . . 3 ((𝜑𝑘𝑍) → ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ)
622, 3, 49, 50, 54, 61clim2c 15066 . 2 (𝜑 → (𝐾 ⇝ (𝐴𝐹𝐵) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
6348, 62mpbird 260 1 (𝜑𝐾 ⇝ (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062   class class class wbr 5053  cfv 6380  (class class class)co 7213  cc 10727   < clt 10867  cmin 11062  cz 12176  cuz 12438  +crp 12586  abscabs 14797  cli 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-neg 11065  df-z 12177  df-uz 12439  df-clim 15049
This theorem is referenced by:  climadd  15193  climmul  15194  climsub  15195
  Copyright terms: Public domain W3C validator