| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caovcl | Structured version Visualization version GIF version | ||
| Description: Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.) |
| Ref | Expression |
|---|---|
| caovcl.1 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| caovcl | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1543 | . 2 ⊢ ⊤ | |
| 2 | caovcl.1 | . . . 4 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| 4 | 3 | caovclg 7594 | . 2 ⊢ ((⊤ ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) ∈ 𝑆) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊤wtru 1540 ∈ wcel 2107 (class class class)co 7400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-iota 6481 df-fv 6536 df-ov 7403 |
| This theorem is referenced by: ecopovtrn 8829 eceqoveq 8831 genpss 11011 genpnnp 11012 genpass 11016 expcllem 14080 txlly 23561 txnlly 23562 |
| Copyright terms: Public domain | W3C validator |