MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovclg Structured version   Visualization version   GIF version

Theorem caovclg 7598
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovclg.1 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)
Assertion
Ref Expression
caovclg ((𝜑 ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem caovclg
StepHypRef Expression
1 caovclg.1 . . 3 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)
21ralrimivva 3200 . 2 (𝜑 → ∀𝑥𝐶𝑦𝐷 (𝑥𝐹𝑦) ∈ 𝐸)
3 oveq1 7415 . . . 4 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
43eleq1d 2818 . . 3 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) ∈ 𝐸 ↔ (𝐴𝐹𝑦) ∈ 𝐸))
5 oveq2 7416 . . . 4 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
65eleq1d 2818 . . 3 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) ∈ 𝐸 ↔ (𝐴𝐹𝐵) ∈ 𝐸))
74, 6rspc2v 3622 . 2 ((𝐴𝐶𝐵𝐷) → (∀𝑥𝐶𝑦𝐷 (𝑥𝐹𝑦) ∈ 𝐸 → (𝐴𝐹𝐵) ∈ 𝐸))
82, 7mpan9 507 1 ((𝜑 ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  (class class class)co 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411
This theorem is referenced by:  caovcld  7599  caovcl  7600  seqcl2  13985  seqcaopr  14004  ercpbl  17494  grpinva  18592  gsumpropd2lem  18597  imasmnd2  18661  imasgrp2  18937  gsumzaddlem  19788  imasring  20142  qusrhm  20873  qusmul2  20874  mplind  21630  plymullem  25729  qusmul  32510  fsuppssind  41167  imasrng  46668
  Copyright terms: Public domain W3C validator