Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovclg Structured version   Visualization version   GIF version

Theorem caovclg 7154
 Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovclg.1 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)
Assertion
Ref Expression
caovclg ((𝜑 ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem caovclg
StepHypRef Expression
1 caovclg.1 . . 3 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)
21ralrimivva 3138 . 2 (𝜑 → ∀𝑥𝐶𝑦𝐷 (𝑥𝐹𝑦) ∈ 𝐸)
3 oveq1 6981 . . . 4 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
43eleq1d 2847 . . 3 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) ∈ 𝐸 ↔ (𝐴𝐹𝑦) ∈ 𝐸))
5 oveq2 6982 . . . 4 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
65eleq1d 2847 . . 3 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) ∈ 𝐸 ↔ (𝐴𝐹𝐵) ∈ 𝐸))
74, 6rspc2v 3545 . 2 ((𝐴𝐶𝐵𝐷) → (∀𝑥𝐶𝑦𝐷 (𝑥𝐹𝑦) ∈ 𝐸 → (𝐴𝐹𝐵) ∈ 𝐸))
82, 7mpan9 499 1 ((𝜑 ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 387   = wceq 1507   ∈ wcel 2048  ∀wral 3085  (class class class)co 6974 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-ext 2747 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-clab 2756  df-cleq 2768  df-clel 2843  df-nfc 2915  df-ral 3090  df-rex 3091  df-rab 3094  df-v 3414  df-dif 3831  df-un 3833  df-in 3835  df-ss 3842  df-nul 4178  df-if 4349  df-sn 4440  df-pr 4442  df-op 4446  df-uni 4711  df-br 4928  df-iota 6150  df-fv 6194  df-ov 6977 This theorem is referenced by:  caovcld  7155  caovcl  7156  grprinvd  7201  seqcl2  13200  seqcaopr  13219  ercpbl  16672  gsumpropd2lem  17735  imasmnd2  17789  imasgrp2  17995  gsumzaddlem  18788  imasring  19086  qusrhm  19725  mplind  19989  plymullem  24503
 Copyright terms: Public domain W3C validator