| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caovclg | Structured version Visualization version GIF version | ||
| Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.) |
| Ref | Expression |
|---|---|
| caovclg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸) |
| Ref | Expression |
|---|---|
| caovclg | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovclg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸) | |
| 2 | 1 | ralrimivva 3175 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 (𝑥𝐹𝑦) ∈ 𝐸) |
| 3 | oveq1 7353 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
| 4 | 3 | eleq1d 2816 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) ∈ 𝐸 ↔ (𝐴𝐹𝑦) ∈ 𝐸)) |
| 5 | oveq2 7354 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
| 6 | 5 | eleq1d 2816 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) ∈ 𝐸 ↔ (𝐴𝐹𝐵) ∈ 𝐸)) |
| 7 | 4, 6 | rspc2v 3583 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 (𝑥𝐹𝑦) ∈ 𝐸 → (𝐴𝐹𝐵) ∈ 𝐸)) |
| 8 | 2, 7 | mpan9 506 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: caovcld 7539 caovcl 7540 coof 7634 seqcl2 13927 seqcaopr 13946 ercpbl 17453 grpinva 18582 gsumpropd2lem 18587 imasmnd2 18682 imasgrp2 18968 gsumzaddlem 19833 imasrng 20095 imasring 20248 qusrhm 21213 qusmul2idl 21216 mplind 22005 plymullem 26148 fsuppssind 42696 |
| Copyright terms: Public domain | W3C validator |