MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovclg Structured version   Visualization version   GIF version

Theorem caovclg 7442
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovclg.1 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)
Assertion
Ref Expression
caovclg ((𝜑 ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem caovclg
StepHypRef Expression
1 caovclg.1 . . 3 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)
21ralrimivva 3114 . 2 (𝜑 → ∀𝑥𝐶𝑦𝐷 (𝑥𝐹𝑦) ∈ 𝐸)
3 oveq1 7262 . . . 4 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
43eleq1d 2823 . . 3 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) ∈ 𝐸 ↔ (𝐴𝐹𝑦) ∈ 𝐸))
5 oveq2 7263 . . . 4 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
65eleq1d 2823 . . 3 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) ∈ 𝐸 ↔ (𝐴𝐹𝐵) ∈ 𝐸))
74, 6rspc2v 3562 . 2 ((𝐴𝐶𝐵𝐷) → (∀𝑥𝐶𝑦𝐷 (𝑥𝐹𝑦) ∈ 𝐸 → (𝐴𝐹𝐵) ∈ 𝐸))
82, 7mpan9 506 1 ((𝜑 ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  caovcld  7443  caovcl  7444  seqcl2  13669  seqcaopr  13688  ercpbl  17177  grprinvd  18273  gsumpropd2lem  18278  imasmnd2  18337  imasgrp2  18605  gsumzaddlem  19437  imasring  19773  qusrhm  20421  mplind  21188  plymullem  25282  fsuppssind  40205
  Copyright terms: Public domain W3C validator