Step | Hyp | Ref
| Expression |
1 | | plydiv.f |
. . . . . . 7
β’ (π β πΉ β (Polyβπ)) |
2 | | plybss 25699 |
. . . . . . 7
β’ (πΉ β (Polyβπ) β π β β) |
3 | 1, 2 | syl 17 |
. . . . . 6
β’ (π β π β β) |
4 | | plydiv.pl |
. . . . . . . . . . . 12
β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯ + π¦) β π) |
5 | | plydiv.tm |
. . . . . . . . . . . 12
β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯ Β· π¦) β π) |
6 | | plydiv.rc |
. . . . . . . . . . . 12
β’ ((π β§ (π₯ β π β§ π₯ β 0)) β (1 / π₯) β π) |
7 | | plydiv.m1 |
. . . . . . . . . . . 12
β’ (π β -1 β π) |
8 | 4, 5, 6, 7 | plydivlem1 25797 |
. . . . . . . . . . 11
β’ (π β 0 β π) |
9 | | plydiv.a |
. . . . . . . . . . . 12
β’ π΄ = (coeffβπΉ) |
10 | 9 | coef2 25736 |
. . . . . . . . . . 11
β’ ((πΉ β (Polyβπ) β§ 0 β π) β π΄:β0βΆπ) |
11 | 1, 8, 10 | syl2anc 584 |
. . . . . . . . . 10
β’ (π β π΄:β0βΆπ) |
12 | | plydiv.m |
. . . . . . . . . . 11
β’ π = (degβπΉ) |
13 | | dgrcl 25738 |
. . . . . . . . . . . 12
β’ (πΉ β (Polyβπ) β (degβπΉ) β
β0) |
14 | 1, 13 | syl 17 |
. . . . . . . . . . 11
β’ (π β (degβπΉ) β
β0) |
15 | 12, 14 | eqeltrid 2837 |
. . . . . . . . . 10
β’ (π β π β
β0) |
16 | 11, 15 | ffvelcdmd 7084 |
. . . . . . . . 9
β’ (π β (π΄βπ) β π) |
17 | 3, 16 | sseldd 3982 |
. . . . . . . 8
β’ (π β (π΄βπ) β β) |
18 | | plydiv.g |
. . . . . . . . . . 11
β’ (π β πΊ β (Polyβπ)) |
19 | | plydiv.b |
. . . . . . . . . . . 12
β’ π΅ = (coeffβπΊ) |
20 | 19 | coef2 25736 |
. . . . . . . . . . 11
β’ ((πΊ β (Polyβπ) β§ 0 β π) β π΅:β0βΆπ) |
21 | 18, 8, 20 | syl2anc 584 |
. . . . . . . . . 10
β’ (π β π΅:β0βΆπ) |
22 | | plydiv.n |
. . . . . . . . . . 11
β’ π = (degβπΊ) |
23 | | dgrcl 25738 |
. . . . . . . . . . . 12
β’ (πΊ β (Polyβπ) β (degβπΊ) β
β0) |
24 | 18, 23 | syl 17 |
. . . . . . . . . . 11
β’ (π β (degβπΊ) β
β0) |
25 | 22, 24 | eqeltrid 2837 |
. . . . . . . . . 10
β’ (π β π β
β0) |
26 | 21, 25 | ffvelcdmd 7084 |
. . . . . . . . 9
β’ (π β (π΅βπ) β π) |
27 | 3, 26 | sseldd 3982 |
. . . . . . . 8
β’ (π β (π΅βπ) β β) |
28 | | plydiv.z |
. . . . . . . . 9
β’ (π β πΊ β
0π) |
29 | 22, 19 | dgreq0 25770 |
. . . . . . . . . . 11
β’ (πΊ β (Polyβπ) β (πΊ = 0π β (π΅βπ) = 0)) |
30 | 18, 29 | syl 17 |
. . . . . . . . . 10
β’ (π β (πΊ = 0π β (π΅βπ) = 0)) |
31 | 30 | necon3bid 2985 |
. . . . . . . . 9
β’ (π β (πΊ β 0π β (π΅βπ) β 0)) |
32 | 28, 31 | mpbid 231 |
. . . . . . . 8
β’ (π β (π΅βπ) β 0) |
33 | 17, 27, 32 | divrecd 11989 |
. . . . . . 7
β’ (π β ((π΄βπ) / (π΅βπ)) = ((π΄βπ) Β· (1 / (π΅βπ)))) |
34 | | fvex 6901 |
. . . . . . . . . . 11
β’ (π΅βπ) β V |
35 | | eleq1 2821 |
. . . . . . . . . . . . . 14
β’ (π₯ = (π΅βπ) β (π₯ β π β (π΅βπ) β π)) |
36 | | neeq1 3003 |
. . . . . . . . . . . . . 14
β’ (π₯ = (π΅βπ) β (π₯ β 0 β (π΅βπ) β 0)) |
37 | 35, 36 | anbi12d 631 |
. . . . . . . . . . . . 13
β’ (π₯ = (π΅βπ) β ((π₯ β π β§ π₯ β 0) β ((π΅βπ) β π β§ (π΅βπ) β 0))) |
38 | 37 | anbi2d 629 |
. . . . . . . . . . . 12
β’ (π₯ = (π΅βπ) β ((π β§ (π₯ β π β§ π₯ β 0)) β (π β§ ((π΅βπ) β π β§ (π΅βπ) β 0)))) |
39 | | oveq2 7413 |
. . . . . . . . . . . . 13
β’ (π₯ = (π΅βπ) β (1 / π₯) = (1 / (π΅βπ))) |
40 | 39 | eleq1d 2818 |
. . . . . . . . . . . 12
β’ (π₯ = (π΅βπ) β ((1 / π₯) β π β (1 / (π΅βπ)) β π)) |
41 | 38, 40 | imbi12d 344 |
. . . . . . . . . . 11
β’ (π₯ = (π΅βπ) β (((π β§ (π₯ β π β§ π₯ β 0)) β (1 / π₯) β π) β ((π β§ ((π΅βπ) β π β§ (π΅βπ) β 0)) β (1 / (π΅βπ)) β π))) |
42 | 34, 41, 6 | vtocl 3549 |
. . . . . . . . . 10
β’ ((π β§ ((π΅βπ) β π β§ (π΅βπ) β 0)) β (1 / (π΅βπ)) β π) |
43 | 42 | ex 413 |
. . . . . . . . 9
β’ (π β (((π΅βπ) β π β§ (π΅βπ) β 0) β (1 / (π΅βπ)) β π)) |
44 | 26, 32, 43 | mp2and 697 |
. . . . . . . 8
β’ (π β (1 / (π΅βπ)) β π) |
45 | 5, 16, 44 | caovcld 7596 |
. . . . . . 7
β’ (π β ((π΄βπ) Β· (1 / (π΅βπ))) β π) |
46 | 33, 45 | eqeltrd 2833 |
. . . . . 6
β’ (π β ((π΄βπ) / (π΅βπ)) β π) |
47 | | plydiv.d |
. . . . . 6
β’ (π β π· β
β0) |
48 | | plydiv.h |
. . . . . . 7
β’ π» = (π§ β β β¦ (((π΄βπ) / (π΅βπ)) Β· (π§βπ·))) |
49 | 48 | ply1term 25709 |
. . . . . 6
β’ ((π β β β§ ((π΄βπ) / (π΅βπ)) β π β§ π· β β0) β π» β (Polyβπ)) |
50 | 3, 46, 47, 49 | syl3anc 1371 |
. . . . 5
β’ (π β π» β (Polyβπ)) |
51 | 50 | adantr 481 |
. . . 4
β’ ((π β§ π β (Polyβπ)) β π» β (Polyβπ)) |
52 | | simpr 485 |
. . . 4
β’ ((π β§ π β (Polyβπ)) β π β (Polyβπ)) |
53 | 4 | adantlr 713 |
. . . 4
β’ (((π β§ π β (Polyβπ)) β§ (π₯ β π β§ π¦ β π)) β (π₯ + π¦) β π) |
54 | 51, 52, 53 | plyadd 25722 |
. . 3
β’ ((π β§ π β (Polyβπ)) β (π» βf + π) β (Polyβπ)) |
55 | | cnex 11187 |
. . . . . . . . 9
β’ β
β V |
56 | 55 | a1i 11 |
. . . . . . . 8
β’ ((π β§ π β (Polyβπ)) β β β V) |
57 | 1 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (Polyβπ)) β πΉ β (Polyβπ)) |
58 | | plyf 25703 |
. . . . . . . . 9
β’ (πΉ β (Polyβπ) β πΉ:ββΆβ) |
59 | 57, 58 | syl 17 |
. . . . . . . 8
β’ ((π β§ π β (Polyβπ)) β πΉ:ββΆβ) |
60 | | mulcl 11190 |
. . . . . . . . . 10
β’ ((π₯ β β β§ π¦ β β) β (π₯ Β· π¦) β β) |
61 | 60 | adantl 482 |
. . . . . . . . 9
β’ (((π β§ π β (Polyβπ)) β§ (π₯ β β β§ π¦ β β)) β (π₯ Β· π¦) β β) |
62 | | plyf 25703 |
. . . . . . . . . 10
β’ (π» β (Polyβπ) β π»:ββΆβ) |
63 | 51, 62 | syl 17 |
. . . . . . . . 9
β’ ((π β§ π β (Polyβπ)) β π»:ββΆβ) |
64 | 18 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β (Polyβπ)) β πΊ β (Polyβπ)) |
65 | | plyf 25703 |
. . . . . . . . . 10
β’ (πΊ β (Polyβπ) β πΊ:ββΆβ) |
66 | 64, 65 | syl 17 |
. . . . . . . . 9
β’ ((π β§ π β (Polyβπ)) β πΊ:ββΆβ) |
67 | | inidm 4217 |
. . . . . . . . 9
β’ (β
β© β) = β |
68 | 61, 63, 66, 56, 56, 67 | off 7684 |
. . . . . . . 8
β’ ((π β§ π β (Polyβπ)) β (π» βf Β· πΊ):ββΆβ) |
69 | | plyf 25703 |
. . . . . . . . . 10
β’ (π β (Polyβπ) β π:ββΆβ) |
70 | 69 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π β (Polyβπ)) β π:ββΆβ) |
71 | 61, 66, 70, 56, 56, 67 | off 7684 |
. . . . . . . 8
β’ ((π β§ π β (Polyβπ)) β (πΊ βf Β· π):ββΆβ) |
72 | | subsub4 11489 |
. . . . . . . . 9
β’ ((π₯ β β β§ π¦ β β β§ π§ β β) β ((π₯ β π¦) β π§) = (π₯ β (π¦ + π§))) |
73 | 72 | adantl 482 |
. . . . . . . 8
β’ (((π β§ π β (Polyβπ)) β§ (π₯ β β β§ π¦ β β β§ π§ β β)) β ((π₯ β π¦) β π§) = (π₯ β (π¦ + π§))) |
74 | 56, 59, 68, 71, 73 | caofass 7703 |
. . . . . . 7
β’ ((π β§ π β (Polyβπ)) β ((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π)) = (πΉ βf β ((π» βf Β·
πΊ) βf +
(πΊ βf
Β· π)))) |
75 | | mulcom 11192 |
. . . . . . . . . . . 12
β’ ((π₯ β β β§ π¦ β β) β (π₯ Β· π¦) = (π¦ Β· π₯)) |
76 | 75 | adantl 482 |
. . . . . . . . . . 11
β’ (((π β§ π β (Polyβπ)) β§ (π₯ β β β§ π¦ β β)) β (π₯ Β· π¦) = (π¦ Β· π₯)) |
77 | 56, 63, 66, 76 | caofcom 7701 |
. . . . . . . . . 10
β’ ((π β§ π β (Polyβπ)) β (π» βf Β· πΊ) = (πΊ βf Β· π»)) |
78 | 77 | oveq1d 7420 |
. . . . . . . . 9
β’ ((π β§ π β (Polyβπ)) β ((π» βf Β· πΊ) βf + (πΊ βf Β·
π)) = ((πΊ βf Β· π») βf + (πΊ βf Β·
π))) |
79 | | adddi 11195 |
. . . . . . . . . . 11
β’ ((π₯ β β β§ π¦ β β β§ π§ β β) β (π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§))) |
80 | 79 | adantl 482 |
. . . . . . . . . 10
β’ (((π β§ π β (Polyβπ)) β§ (π₯ β β β§ π¦ β β β§ π§ β β)) β (π₯ Β· (π¦ + π§)) = ((π₯ Β· π¦) + (π₯ Β· π§))) |
81 | 56, 66, 63, 70, 80 | caofdi 7705 |
. . . . . . . . 9
β’ ((π β§ π β (Polyβπ)) β (πΊ βf Β· (π» βf + π)) = ((πΊ βf Β· π») βf + (πΊ βf Β·
π))) |
82 | 78, 81 | eqtr4d 2775 |
. . . . . . . 8
β’ ((π β§ π β (Polyβπ)) β ((π» βf Β· πΊ) βf + (πΊ βf Β·
π)) = (πΊ βf Β· (π» βf + π))) |
83 | 82 | oveq2d 7421 |
. . . . . . 7
β’ ((π β§ π β (Polyβπ)) β (πΉ βf β ((π» βf Β·
πΊ) βf +
(πΊ βf
Β· π))) = (πΉ βf β
(πΊ βf
Β· (π»
βf + π)))) |
84 | 74, 83 | eqtrd 2772 |
. . . . . 6
β’ ((π β§ π β (Polyβπ)) β ((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π)) = (πΉ βf β (πΊ βf Β·
(π» βf +
π)))) |
85 | 84 | eqeq1d 2734 |
. . . . 5
β’ ((π β§ π β (Polyβπ)) β (((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π)) = 0π β (πΉ βf β
(πΊ βf
Β· (π»
βf + π)))
= 0π)) |
86 | 84 | fveq2d 6892 |
. . . . . 6
β’ ((π β§ π β (Polyβπ)) β (degβ((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π))) = (degβ(πΉ βf β (πΊ βf Β·
(π» βf +
π))))) |
87 | 86 | breq1d 5157 |
. . . . 5
β’ ((π β§ π β (Polyβπ)) β ((degβ((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π))) < π β (degβ(πΉ βf β (πΊ βf Β·
(π» βf +
π)))) < π)) |
88 | 85, 87 | orbi12d 917 |
. . . 4
β’ ((π β§ π β (Polyβπ)) β ((((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ((πΉ
βf β (π» βf Β· πΊ)) βf β
(πΊ βf
Β· π))) < π) β ((πΉ βf β (πΊ βf Β·
(π» βf +
π))) =
0π β¨ (degβ(πΉ βf β (πΊ βf Β·
(π» βf +
π)))) < π))) |
89 | 88 | biimpa 477 |
. . 3
β’ (((π β§ π β (Polyβπ)) β§ (((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ((πΉ
βf β (π» βf Β· πΊ)) βf β
(πΊ βf
Β· π))) < π)) β ((πΉ βf β (πΊ βf Β·
(π» βf +
π))) =
0π β¨ (degβ(πΉ βf β (πΊ βf Β·
(π» βf +
π)))) < π)) |
90 | | plydiv.r |
. . . . . . 7
β’ π
= (πΉ βf β (πΊ βf Β·
π)) |
91 | | oveq2 7413 |
. . . . . . . 8
β’ (π = (π» βf + π) β (πΊ βf Β· π) = (πΊ βf Β· (π» βf + π))) |
92 | 91 | oveq2d 7421 |
. . . . . . 7
β’ (π = (π» βf + π) β (πΉ βf β (πΊ βf Β·
π)) = (πΉ βf β (πΊ βf Β·
(π» βf +
π)))) |
93 | 90, 92 | eqtrid 2784 |
. . . . . 6
β’ (π = (π» βf + π) β π
= (πΉ βf β (πΊ βf Β·
(π» βf +
π)))) |
94 | 93 | eqeq1d 2734 |
. . . . 5
β’ (π = (π» βf + π) β (π
= 0π β (πΉ βf β
(πΊ βf
Β· (π»
βf + π)))
= 0π)) |
95 | 93 | fveq2d 6892 |
. . . . . 6
β’ (π = (π» βf + π) β (degβπ
) = (degβ(πΉ βf β (πΊ βf Β·
(π» βf +
π))))) |
96 | 95 | breq1d 5157 |
. . . . 5
β’ (π = (π» βf + π) β ((degβπ
) < π β (degβ(πΉ βf β (πΊ βf Β·
(π» βf +
π)))) < π)) |
97 | 94, 96 | orbi12d 917 |
. . . 4
β’ (π = (π» βf + π) β ((π
= 0π β¨
(degβπ
) < π) β ((πΉ βf β (πΊ βf Β·
(π» βf +
π))) =
0π β¨ (degβ(πΉ βf β (πΊ βf Β·
(π» βf +
π)))) < π))) |
98 | 97 | rspcev 3612 |
. . 3
β’ (((π» βf + π) β (Polyβπ) β§ ((πΉ βf β (πΊ βf Β·
(π» βf +
π))) =
0π β¨ (degβ(πΉ βf β (πΊ βf Β·
(π» βf +
π)))) < π)) β βπ β (Polyβπ)(π
= 0π β¨
(degβπ
) < π)) |
99 | 54, 89, 98 | syl2an2r 683 |
. 2
β’ (((π β§ π β (Polyβπ)) β§ (((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ((πΉ
βf β (π» βf Β· πΊ)) βf β
(πΊ βf
Β· π))) < π)) β βπ β (Polyβπ)(π
= 0π β¨
(degβπ
) < π)) |
100 | 50, 18, 4, 5 | plymul 25723 |
. . . . . 6
β’ (π β (π» βf Β· πΊ) β (Polyβπ)) |
101 | | eqid 2732 |
. . . . . . 7
β’
(degβ(π»
βf Β· πΊ)) = (degβ(π» βf Β· πΊ)) |
102 | 12, 101 | dgrsub 25777 |
. . . . . 6
β’ ((πΉ β (Polyβπ) β§ (π» βf Β· πΊ) β (Polyβπ)) β (degβ(πΉ βf β
(π» βf
Β· πΊ))) β€ if(π β€ (degβ(π» βf Β·
πΊ)), (degβ(π» βf Β·
πΊ)), π)) |
103 | 1, 100, 102 | syl2anc 584 |
. . . . 5
β’ (π β (degβ(πΉ βf β
(π» βf
Β· πΊ))) β€ if(π β€ (degβ(π» βf Β·
πΊ)), (degβ(π» βf Β·
πΊ)), π)) |
104 | | plydiv.fz |
. . . . . . . . . . . . 13
β’ (π β πΉ β
0π) |
105 | 12, 9 | dgreq0 25770 |
. . . . . . . . . . . . . . 15
β’ (πΉ β (Polyβπ) β (πΉ = 0π β (π΄βπ) = 0)) |
106 | 1, 105 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (πΉ = 0π β (π΄βπ) = 0)) |
107 | 106 | necon3bid 2985 |
. . . . . . . . . . . . 13
β’ (π β (πΉ β 0π β (π΄βπ) β 0)) |
108 | 104, 107 | mpbid 231 |
. . . . . . . . . . . 12
β’ (π β (π΄βπ) β 0) |
109 | 17, 27, 108, 32 | divne0d 12002 |
. . . . . . . . . . 11
β’ (π β ((π΄βπ) / (π΅βπ)) β 0) |
110 | 3, 46 | sseldd 3982 |
. . . . . . . . . . . . 13
β’ (π β ((π΄βπ) / (π΅βπ)) β β) |
111 | 48 | coe1term 25764 |
. . . . . . . . . . . . 13
β’ ((((π΄βπ) / (π΅βπ)) β β β§ π· β β0 β§ π· β β0)
β ((coeffβπ»)βπ·) = if(π· = π·, ((π΄βπ) / (π΅βπ)), 0)) |
112 | 110, 47, 47, 111 | syl3anc 1371 |
. . . . . . . . . . . 12
β’ (π β ((coeffβπ»)βπ·) = if(π· = π·, ((π΄βπ) / (π΅βπ)), 0)) |
113 | | eqid 2732 |
. . . . . . . . . . . . 13
β’ π· = π· |
114 | 113 | iftruei 4534 |
. . . . . . . . . . . 12
β’ if(π· = π·, ((π΄βπ) / (π΅βπ)), 0) = ((π΄βπ) / (π΅βπ)) |
115 | 112, 114 | eqtrdi 2788 |
. . . . . . . . . . 11
β’ (π β ((coeffβπ»)βπ·) = ((π΄βπ) / (π΅βπ))) |
116 | | c0ex 11204 |
. . . . . . . . . . . . 13
β’ 0 β
V |
117 | 116 | fvconst2 7201 |
. . . . . . . . . . . 12
β’ (π· β β0
β ((β0 Γ {0})βπ·) = 0) |
118 | 47, 117 | syl 17 |
. . . . . . . . . . 11
β’ (π β ((β0
Γ {0})βπ·) =
0) |
119 | 109, 115,
118 | 3netr4d 3018 |
. . . . . . . . . 10
β’ (π β ((coeffβπ»)βπ·) β ((β0 Γ
{0})βπ·)) |
120 | | fveq2 6888 |
. . . . . . . . . . . . 13
β’ (π» = 0π β
(coeffβπ») =
(coeffβ0π)) |
121 | | coe0 25761 |
. . . . . . . . . . . . 13
β’
(coeffβ0π) = (β0 Γ
{0}) |
122 | 120, 121 | eqtrdi 2788 |
. . . . . . . . . . . 12
β’ (π» = 0π β
(coeffβπ») =
(β0 Γ {0})) |
123 | 122 | fveq1d 6890 |
. . . . . . . . . . 11
β’ (π» = 0π β
((coeffβπ»)βπ·) = ((β0 Γ
{0})βπ·)) |
124 | 123 | necon3i 2973 |
. . . . . . . . . 10
β’
(((coeffβπ»)βπ·) β ((β0 Γ
{0})βπ·) β π» β
0π) |
125 | 119, 124 | syl 17 |
. . . . . . . . 9
β’ (π β π» β
0π) |
126 | | eqid 2732 |
. . . . . . . . . 10
β’
(degβπ») =
(degβπ») |
127 | 126, 22 | dgrmul 25775 |
. . . . . . . . 9
β’ (((π» β (Polyβπ) β§ π» β 0π) β§ (πΊ β (Polyβπ) β§ πΊ β 0π)) β
(degβ(π»
βf Β· πΊ)) = ((degβπ») + π)) |
128 | 50, 125, 18, 28, 127 | syl22anc 837 |
. . . . . . . 8
β’ (π β (degβ(π» βf Β·
πΊ)) = ((degβπ») + π)) |
129 | 48 | dgr1term 25765 |
. . . . . . . . . . . 12
β’ ((((π΄βπ) / (π΅βπ)) β β β§ ((π΄βπ) / (π΅βπ)) β 0 β§ π· β β0) β
(degβπ») = π·) |
130 | 110, 109,
47, 129 | syl3anc 1371 |
. . . . . . . . . . 11
β’ (π β (degβπ») = π·) |
131 | | plydiv.e |
. . . . . . . . . . 11
β’ (π β (π β π) = π·) |
132 | 130, 131 | eqtr4d 2775 |
. . . . . . . . . 10
β’ (π β (degβπ») = (π β π)) |
133 | 132 | oveq1d 7420 |
. . . . . . . . 9
β’ (π β ((degβπ») + π) = ((π β π) + π)) |
134 | 15 | nn0cnd 12530 |
. . . . . . . . . 10
β’ (π β π β β) |
135 | 25 | nn0cnd 12530 |
. . . . . . . . . 10
β’ (π β π β β) |
136 | 134, 135 | npcand 11571 |
. . . . . . . . 9
β’ (π β ((π β π) + π) = π) |
137 | 133, 136 | eqtrd 2772 |
. . . . . . . 8
β’ (π β ((degβπ») + π) = π) |
138 | 128, 137 | eqtrd 2772 |
. . . . . . 7
β’ (π β (degβ(π» βf Β·
πΊ)) = π) |
139 | 138 | ifeq1d 4546 |
. . . . . 6
β’ (π β if(π β€ (degβ(π» βf Β· πΊ)), (degβ(π» βf Β·
πΊ)), π) = if(π β€ (degβ(π» βf Β· πΊ)), π, π)) |
140 | | ifid 4567 |
. . . . . 6
β’ if(π β€ (degβ(π» βf Β·
πΊ)), π, π) = π |
141 | 139, 140 | eqtrdi 2788 |
. . . . 5
β’ (π β if(π β€ (degβ(π» βf Β· πΊ)), (degβ(π» βf Β·
πΊ)), π) = π) |
142 | 103, 141 | breqtrd 5173 |
. . . 4
β’ (π β (degβ(πΉ βf β
(π» βf
Β· πΊ))) β€ π) |
143 | | eqid 2732 |
. . . . . . . 8
β’
(coeffβ(π»
βf Β· πΊ)) = (coeffβ(π» βf Β· πΊ)) |
144 | 9, 143 | coesub 25762 |
. . . . . . 7
β’ ((πΉ β (Polyβπ) β§ (π» βf Β· πΊ) β (Polyβπ)) β (coeffβ(πΉ βf β
(π» βf
Β· πΊ))) = (π΄ βf β
(coeffβ(π»
βf Β· πΊ)))) |
145 | 1, 100, 144 | syl2anc 584 |
. . . . . 6
β’ (π β (coeffβ(πΉ βf β
(π» βf
Β· πΊ))) = (π΄ βf β
(coeffβ(π»
βf Β· πΊ)))) |
146 | 145 | fveq1d 6890 |
. . . . 5
β’ (π β ((coeffβ(πΉ βf β
(π» βf
Β· πΊ)))βπ) = ((π΄ βf β
(coeffβ(π»
βf Β· πΊ)))βπ)) |
147 | 9 | coef3 25737 |
. . . . . . . 8
β’ (πΉ β (Polyβπ) β π΄:β0βΆβ) |
148 | | ffn 6714 |
. . . . . . . 8
β’ (π΄:β0βΆβ β
π΄ Fn
β0) |
149 | 1, 147, 148 | 3syl 18 |
. . . . . . 7
β’ (π β π΄ Fn β0) |
150 | 143 | coef3 25737 |
. . . . . . . 8
β’ ((π» βf Β·
πΊ) β (Polyβπ) β (coeffβ(π» βf Β·
πΊ)):β0βΆβ) |
151 | | ffn 6714 |
. . . . . . . 8
β’
((coeffβ(π»
βf Β· πΊ)):β0βΆβ β
(coeffβ(π»
βf Β· πΊ)) Fn β0) |
152 | 100, 150,
151 | 3syl 18 |
. . . . . . 7
β’ (π β (coeffβ(π» βf Β·
πΊ)) Fn
β0) |
153 | | nn0ex 12474 |
. . . . . . . 8
β’
β0 β V |
154 | 153 | a1i 11 |
. . . . . . 7
β’ (π β β0 β
V) |
155 | | inidm 4217 |
. . . . . . 7
β’
(β0 β© β0) =
β0 |
156 | | eqidd 2733 |
. . . . . . 7
β’ ((π β§ π β β0) β (π΄βπ) = (π΄βπ)) |
157 | | eqid 2732 |
. . . . . . . . . . 11
β’
(coeffβπ») =
(coeffβπ») |
158 | 157, 19, 126, 22 | coemulhi 25759 |
. . . . . . . . . 10
β’ ((π» β (Polyβπ) β§ πΊ β (Polyβπ)) β ((coeffβ(π» βf Β· πΊ))β((degβπ») + π)) = (((coeffβπ»)β(degβπ»)) Β· (π΅βπ))) |
159 | 50, 18, 158 | syl2anc 584 |
. . . . . . . . 9
β’ (π β ((coeffβ(π» βf Β·
πΊ))β((degβπ») + π)) = (((coeffβπ»)β(degβπ»)) Β· (π΅βπ))) |
160 | 137 | fveq2d 6892 |
. . . . . . . . 9
β’ (π β ((coeffβ(π» βf Β·
πΊ))β((degβπ») + π)) = ((coeffβ(π» βf Β· πΊ))βπ)) |
161 | 130 | fveq2d 6892 |
. . . . . . . . . . . 12
β’ (π β ((coeffβπ»)β(degβπ»)) = ((coeffβπ»)βπ·)) |
162 | 161, 115 | eqtrd 2772 |
. . . . . . . . . . 11
β’ (π β ((coeffβπ»)β(degβπ»)) = ((π΄βπ) / (π΅βπ))) |
163 | 162 | oveq1d 7420 |
. . . . . . . . . 10
β’ (π β (((coeffβπ»)β(degβπ»)) Β· (π΅βπ)) = (((π΄βπ) / (π΅βπ)) Β· (π΅βπ))) |
164 | 17, 27, 32 | divcan1d 11987 |
. . . . . . . . . 10
β’ (π β (((π΄βπ) / (π΅βπ)) Β· (π΅βπ)) = (π΄βπ)) |
165 | 163, 164 | eqtrd 2772 |
. . . . . . . . 9
β’ (π β (((coeffβπ»)β(degβπ»)) Β· (π΅βπ)) = (π΄βπ)) |
166 | 159, 160,
165 | 3eqtr3d 2780 |
. . . . . . . 8
β’ (π β ((coeffβ(π» βf Β·
πΊ))βπ) = (π΄βπ)) |
167 | 166 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β β0) β
((coeffβ(π»
βf Β· πΊ))βπ) = (π΄βπ)) |
168 | 149, 152,
154, 154, 155, 156, 167 | ofval 7677 |
. . . . . 6
β’ ((π β§ π β β0) β ((π΄ βf β
(coeffβ(π»
βf Β· πΊ)))βπ) = ((π΄βπ) β (π΄βπ))) |
169 | 15, 168 | mpdan 685 |
. . . . 5
β’ (π β ((π΄ βf β
(coeffβ(π»
βf Β· πΊ)))βπ) = ((π΄βπ) β (π΄βπ))) |
170 | 17 | subidd 11555 |
. . . . 5
β’ (π β ((π΄βπ) β (π΄βπ)) = 0) |
171 | 146, 169,
170 | 3eqtrd 2776 |
. . . 4
β’ (π β ((coeffβ(πΉ βf β
(π» βf
Β· πΊ)))βπ) = 0) |
172 | 1, 100, 4, 5, 7 | plysub 25724 |
. . . . . . . . . 10
β’ (π β (πΉ βf β (π» βf Β·
πΊ)) β
(Polyβπ)) |
173 | | dgrcl 25738 |
. . . . . . . . . 10
β’ ((πΉ βf β
(π» βf
Β· πΊ)) β
(Polyβπ) β
(degβ(πΉ
βf β (π» βf Β· πΊ))) β
β0) |
174 | 172, 173 | syl 17 |
. . . . . . . . 9
β’ (π β (degβ(πΉ βf β
(π» βf
Β· πΊ))) β
β0) |
175 | 174 | nn0red 12529 |
. . . . . . . 8
β’ (π β (degβ(πΉ βf β
(π» βf
Β· πΊ))) β
β) |
176 | 15 | nn0red 12529 |
. . . . . . . 8
β’ (π β π β β) |
177 | 25 | nn0red 12529 |
. . . . . . . 8
β’ (π β π β β) |
178 | 175, 176,
177 | ltsub1d 11819 |
. . . . . . 7
β’ (π β ((degβ(πΉ βf β
(π» βf
Β· πΊ))) < π β ((degβ(πΉ βf β
(π» βf
Β· πΊ))) β π) < (π β π))) |
179 | 131 | breq2d 5159 |
. . . . . . 7
β’ (π β (((degβ(πΉ βf β
(π» βf
Β· πΊ))) β π) < (π β π) β ((degβ(πΉ βf β (π» βf Β·
πΊ))) β π) < π·)) |
180 | 178, 179 | bitrd 278 |
. . . . . 6
β’ (π β ((degβ(πΉ βf β
(π» βf
Β· πΊ))) < π β ((degβ(πΉ βf β
(π» βf
Β· πΊ))) β π) < π·)) |
181 | 180 | orbi2d 914 |
. . . . 5
β’ (π β (((πΉ βf β (π» βf Β·
πΊ)) = 0π
β¨ (degβ(πΉ
βf β (π» βf Β· πΊ))) < π) β ((πΉ βf β (π» βf Β·
πΊ)) = 0π
β¨ ((degβ(πΉ
βf β (π» βf Β· πΊ))) β π) < π·))) |
182 | | eqid 2732 |
. . . . . . 7
β’
(degβ(πΉ
βf β (π» βf Β· πΊ))) = (degβ(πΉ βf β
(π» βf
Β· πΊ))) |
183 | | eqid 2732 |
. . . . . . 7
β’
(coeffβ(πΉ
βf β (π» βf Β· πΊ))) = (coeffβ(πΉ βf β
(π» βf
Β· πΊ))) |
184 | 182, 183 | dgrlt 25771 |
. . . . . 6
β’ (((πΉ βf β
(π» βf
Β· πΊ)) β
(Polyβπ) β§ π β β0)
β (((πΉ
βf β (π» βf Β· πΊ)) = 0π β¨
(degβ(πΉ
βf β (π» βf Β· πΊ))) < π) β ((degβ(πΉ βf β (π» βf Β·
πΊ))) β€ π β§ ((coeffβ(πΉ βf β (π» βf Β·
πΊ)))βπ) = 0))) |
185 | 172, 15, 184 | syl2anc 584 |
. . . . 5
β’ (π β (((πΉ βf β (π» βf Β·
πΊ)) = 0π
β¨ (degβ(πΉ
βf β (π» βf Β· πΊ))) < π) β ((degβ(πΉ βf β (π» βf Β·
πΊ))) β€ π β§ ((coeffβ(πΉ βf β (π» βf Β·
πΊ)))βπ) = 0))) |
186 | 181, 185 | bitr3d 280 |
. . . 4
β’ (π β (((πΉ βf β (π» βf Β·
πΊ)) = 0π
β¨ ((degβ(πΉ
βf β (π» βf Β· πΊ))) β π) < π·) β ((degβ(πΉ βf β (π» βf Β·
πΊ))) β€ π β§ ((coeffβ(πΉ βf β (π» βf Β·
πΊ)))βπ) = 0))) |
187 | 142, 171,
186 | mpbir2and 711 |
. . 3
β’ (π β ((πΉ βf β (π» βf Β·
πΊ)) = 0π
β¨ ((degβ(πΉ
βf β (π» βf Β· πΊ))) β π) < π·)) |
188 | | eqeq1 2736 |
. . . . . 6
β’ (π = (πΉ βf β (π» βf Β·
πΊ)) β (π = 0π β
(πΉ βf
β (π»
βf Β· πΊ)) =
0π)) |
189 | | fveq2 6888 |
. . . . . . . 8
β’ (π = (πΉ βf β (π» βf Β·
πΊ)) β (degβπ) = (degβ(πΉ βf β
(π» βf
Β· πΊ)))) |
190 | 189 | oveq1d 7420 |
. . . . . . 7
β’ (π = (πΉ βf β (π» βf Β·
πΊ)) β
((degβπ) β
π) = ((degβ(πΉ βf β
(π» βf
Β· πΊ))) β π)) |
191 | 190 | breq1d 5157 |
. . . . . 6
β’ (π = (πΉ βf β (π» βf Β·
πΊ)) β
(((degβπ) β
π) < π· β ((degβ(πΉ βf β (π» βf Β·
πΊ))) β π) < π·)) |
192 | 188, 191 | orbi12d 917 |
. . . . 5
β’ (π = (πΉ βf β (π» βf Β·
πΊ)) β ((π = 0π β¨
((degβπ) β
π) < π·) β ((πΉ βf β (π» βf Β·
πΊ)) = 0π
β¨ ((degβ(πΉ
βf β (π» βf Β· πΊ))) β π) < π·))) |
193 | | plydiv.u |
. . . . . . . . 9
β’ π = (π βf β (πΊ βf Β·
π)) |
194 | | oveq1 7412 |
. . . . . . . . 9
β’ (π = (πΉ βf β (π» βf Β·
πΊ)) β (π βf β
(πΊ βf
Β· π)) = ((πΉ βf β
(π» βf
Β· πΊ))
βf β (πΊ βf Β· π))) |
195 | 193, 194 | eqtrid 2784 |
. . . . . . . 8
β’ (π = (πΉ βf β (π» βf Β·
πΊ)) β π = ((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π))) |
196 | 195 | eqeq1d 2734 |
. . . . . . 7
β’ (π = (πΉ βf β (π» βf Β·
πΊ)) β (π = 0π β
((πΉ βf
β (π»
βf Β· πΊ)) βf β (πΊ βf Β·
π)) =
0π)) |
197 | 195 | fveq2d 6892 |
. . . . . . . 8
β’ (π = (πΉ βf β (π» βf Β·
πΊ)) β (degβπ) = (degβ((πΉ βf β
(π» βf
Β· πΊ))
βf β (πΊ βf Β· π)))) |
198 | 197 | breq1d 5157 |
. . . . . . 7
β’ (π = (πΉ βf β (π» βf Β·
πΊ)) β
((degβπ) < π β (degβ((πΉ βf β
(π» βf
Β· πΊ))
βf β (πΊ βf Β· π))) < π)) |
199 | 196, 198 | orbi12d 917 |
. . . . . 6
β’ (π = (πΉ βf β (π» βf Β·
πΊ)) β ((π = 0π β¨
(degβπ) < π) β (((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ((πΉ
βf β (π» βf Β· πΊ)) βf β
(πΊ βf
Β· π))) < π))) |
200 | 199 | rexbidv 3178 |
. . . . 5
β’ (π = (πΉ βf β (π» βf Β·
πΊ)) β (βπ β (Polyβπ)(π = 0π β¨
(degβπ) < π) β βπ β (Polyβπ)(((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ((πΉ
βf β (π» βf Β· πΊ)) βf β
(πΊ βf
Β· π))) < π))) |
201 | 192, 200 | imbi12d 344 |
. . . 4
β’ (π = (πΉ βf β (π» βf Β·
πΊ)) β (((π = 0π β¨
((degβπ) β
π) < π·) β βπ β (Polyβπ)(π = 0π β¨
(degβπ) < π)) β (((πΉ βf β (π» βf Β·
πΊ)) = 0π
β¨ ((degβ(πΉ
βf β (π» βf Β· πΊ))) β π) < π·) β βπ β (Polyβπ)(((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ((πΉ
βf β (π» βf Β· πΊ)) βf β
(πΊ βf
Β· π))) < π)))) |
202 | | plydiv.al |
. . . 4
β’ (π β βπ β (Polyβπ)((π = 0π β¨
((degβπ) β
π) < π·) β βπ β (Polyβπ)(π = 0π β¨
(degβπ) < π))) |
203 | 201, 202,
172 | rspcdva 3613 |
. . 3
β’ (π β (((πΉ βf β (π» βf Β·
πΊ)) = 0π
β¨ ((degβ(πΉ
βf β (π» βf Β· πΊ))) β π) < π·) β βπ β (Polyβπ)(((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ((πΉ
βf β (π» βf Β· πΊ)) βf β
(πΊ βf
Β· π))) < π))) |
204 | 187, 203 | mpd 15 |
. 2
β’ (π β βπ β (Polyβπ)(((πΉ βf β (π» βf Β·
πΊ)) βf
β (πΊ
βf Β· π)) = 0π β¨
(degβ((πΉ
βf β (π» βf Β· πΊ)) βf β
(πΊ βf
Β· π))) < π)) |
205 | 99, 204 | r19.29a 3162 |
1
β’ (π β βπ β (Polyβπ)(π
= 0π β¨
(degβπ
) < π)) |