MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov42 Structured version   Visualization version   GIF version

Theorem caov42 7505
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1 𝐴 ∈ V
caov.2 𝐵 ∈ V
caov.3 𝐶 ∈ V
caov.com (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
caov.ass ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
caov.4 𝐷 ∈ V
Assertion
Ref Expression
caov42 ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐷𝐹𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem caov42
StepHypRef Expression
1 caov.1 . . 3 𝐴 ∈ V
2 caov.2 . . 3 𝐵 ∈ V
3 caov.3 . . 3 𝐶 ∈ V
4 caov.com . . 3 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
5 caov.ass . . 3 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
6 caov.4 . . 3 𝐷 ∈ V
71, 2, 3, 4, 5, 6caov4 7503 . 2 ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷))
82, 6, 4caovcom 7469 . . 3 (𝐵𝐹𝐷) = (𝐷𝐹𝐵)
98oveq2i 7286 . 2 ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐷𝐹𝐵))
107, 9eqtri 2766 1 ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐷𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  Vcvv 3432  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  caovlem2  7508  mulcmpblnrlem  10826  ltasr  10856  axmulass  10913
  Copyright terms: Public domain W3C validator