| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq1 7438 | . . . . . 6
⊢ (𝑢 = 𝐴 → (𝑢𝐹𝑤) = (𝐴𝐹𝑤)) | 
| 2 | 1 | eqeq1d 2739 | . . . . 5
⊢ (𝑢 = 𝐴 → ((𝑢𝐹𝑤) = 𝐵 ↔ (𝐴𝐹𝑤) = 𝐵)) | 
| 3 | 2 | mobidv 2549 | . . . 4
⊢ (𝑢 = 𝐴 → (∃*𝑤(𝑢𝐹𝑤) = 𝐵 ↔ ∃*𝑤(𝐴𝐹𝑤) = 𝐵)) | 
| 4 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑤 = 𝑣 → (𝑢𝐹𝑤) = (𝑢𝐹𝑣)) | 
| 5 | 4 | eqeq1d 2739 | . . . . . 6
⊢ (𝑤 = 𝑣 → ((𝑢𝐹𝑤) = 𝐵 ↔ (𝑢𝐹𝑣) = 𝐵)) | 
| 6 | 5 | mo4 2566 | . . . . 5
⊢
(∃*𝑤(𝑢𝐹𝑤) = 𝐵 ↔ ∀𝑤∀𝑣(((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → 𝑤 = 𝑣)) | 
| 7 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → (𝑢𝐹𝑣) = 𝐵) | 
| 8 | 7 | oveq2d 7447 | . . . . . . . 8
⊢ (((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → (𝑤𝐹(𝑢𝐹𝑣)) = (𝑤𝐹𝐵)) | 
| 9 |  | simpl 482 | . . . . . . . . . 10
⊢ (((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → (𝑢𝐹𝑤) = 𝐵) | 
| 10 | 9 | oveq1d 7446 | . . . . . . . . 9
⊢ (((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → ((𝑢𝐹𝑤)𝐹𝑣) = (𝐵𝐹𝑣)) | 
| 11 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑢 ∈ V | 
| 12 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑤 ∈ V | 
| 13 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑣 ∈ V | 
| 14 |  | caovmo.ass | . . . . . . . . . . 11
⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | 
| 15 | 11, 12, 13, 14 | caovass 7633 | . . . . . . . . . 10
⊢ ((𝑢𝐹𝑤)𝐹𝑣) = (𝑢𝐹(𝑤𝐹𝑣)) | 
| 16 |  | caovmo.com | . . . . . . . . . . 11
⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | 
| 17 | 11, 12, 13, 16, 14 | caov12 7661 | . . . . . . . . . 10
⊢ (𝑢𝐹(𝑤𝐹𝑣)) = (𝑤𝐹(𝑢𝐹𝑣)) | 
| 18 | 15, 17 | eqtri 2765 | . . . . . . . . 9
⊢ ((𝑢𝐹𝑤)𝐹𝑣) = (𝑤𝐹(𝑢𝐹𝑣)) | 
| 19 |  | caovmo.2 | . . . . . . . . . . 11
⊢ 𝐵 ∈ 𝑆 | 
| 20 | 19 | elexi 3503 | . . . . . . . . . 10
⊢ 𝐵 ∈ V | 
| 21 | 20, 13, 16 | caovcom 7630 | . . . . . . . . 9
⊢ (𝐵𝐹𝑣) = (𝑣𝐹𝐵) | 
| 22 | 10, 18, 21 | 3eqtr3g 2800 | . . . . . . . 8
⊢ (((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → (𝑤𝐹(𝑢𝐹𝑣)) = (𝑣𝐹𝐵)) | 
| 23 | 8, 22 | eqtr3d 2779 | . . . . . . 7
⊢ (((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → (𝑤𝐹𝐵) = (𝑣𝐹𝐵)) | 
| 24 | 9, 19 | eqeltrdi 2849 | . . . . . . . . 9
⊢ (((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → (𝑢𝐹𝑤) ∈ 𝑆) | 
| 25 |  | caovmo.dom | . . . . . . . . . 10
⊢ dom 𝐹 = (𝑆 × 𝑆) | 
| 26 |  | caovmo.3 | . . . . . . . . . 10
⊢  ¬
∅ ∈ 𝑆 | 
| 27 | 25, 26 | ndmovrcl 7619 | . . . . . . . . 9
⊢ ((𝑢𝐹𝑤) ∈ 𝑆 → (𝑢 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) | 
| 28 | 24, 27 | syl 17 | . . . . . . . 8
⊢ (((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → (𝑢 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) | 
| 29 |  | oveq1 7438 | . . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (𝑥𝐹𝐵) = (𝑤𝐹𝐵)) | 
| 30 |  | id 22 | . . . . . . . . . 10
⊢ (𝑥 = 𝑤 → 𝑥 = 𝑤) | 
| 31 | 29, 30 | eqeq12d 2753 | . . . . . . . . 9
⊢ (𝑥 = 𝑤 → ((𝑥𝐹𝐵) = 𝑥 ↔ (𝑤𝐹𝐵) = 𝑤)) | 
| 32 |  | caovmo.id | . . . . . . . . 9
⊢ (𝑥 ∈ 𝑆 → (𝑥𝐹𝐵) = 𝑥) | 
| 33 | 31, 32 | vtoclga 3577 | . . . . . . . 8
⊢ (𝑤 ∈ 𝑆 → (𝑤𝐹𝐵) = 𝑤) | 
| 34 | 28, 33 | simpl2im 503 | . . . . . . 7
⊢ (((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → (𝑤𝐹𝐵) = 𝑤) | 
| 35 | 7, 19 | eqeltrdi 2849 | . . . . . . . . 9
⊢ (((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → (𝑢𝐹𝑣) ∈ 𝑆) | 
| 36 | 25, 26 | ndmovrcl 7619 | . . . . . . . . 9
⊢ ((𝑢𝐹𝑣) ∈ 𝑆 → (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) | 
| 37 | 35, 36 | syl 17 | . . . . . . . 8
⊢ (((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) | 
| 38 |  | oveq1 7438 | . . . . . . . . . 10
⊢ (𝑥 = 𝑣 → (𝑥𝐹𝐵) = (𝑣𝐹𝐵)) | 
| 39 |  | id 22 | . . . . . . . . . 10
⊢ (𝑥 = 𝑣 → 𝑥 = 𝑣) | 
| 40 | 38, 39 | eqeq12d 2753 | . . . . . . . . 9
⊢ (𝑥 = 𝑣 → ((𝑥𝐹𝐵) = 𝑥 ↔ (𝑣𝐹𝐵) = 𝑣)) | 
| 41 | 40, 32 | vtoclga 3577 | . . . . . . . 8
⊢ (𝑣 ∈ 𝑆 → (𝑣𝐹𝐵) = 𝑣) | 
| 42 | 37, 41 | simpl2im 503 | . . . . . . 7
⊢ (((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → (𝑣𝐹𝐵) = 𝑣) | 
| 43 | 23, 34, 42 | 3eqtr3d 2785 | . . . . . 6
⊢ (((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → 𝑤 = 𝑣) | 
| 44 | 43 | ax-gen 1795 | . . . . 5
⊢
∀𝑣(((𝑢𝐹𝑤) = 𝐵 ∧ (𝑢𝐹𝑣) = 𝐵) → 𝑤 = 𝑣) | 
| 45 | 6, 44 | mpgbir 1799 | . . . 4
⊢
∃*𝑤(𝑢𝐹𝑤) = 𝐵 | 
| 46 | 3, 45 | vtoclg 3554 | . . 3
⊢ (𝐴 ∈ 𝑆 → ∃*𝑤(𝐴𝐹𝑤) = 𝐵) | 
| 47 |  | moanimv 2619 | . . 3
⊢
(∃*𝑤(𝐴 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ↔ (𝐴 ∈ 𝑆 → ∃*𝑤(𝐴𝐹𝑤) = 𝐵)) | 
| 48 | 46, 47 | mpbir 231 | . 2
⊢
∃*𝑤(𝐴 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) | 
| 49 |  | eleq1 2829 | . . . . . . 7
⊢ ((𝐴𝐹𝑤) = 𝐵 → ((𝐴𝐹𝑤) ∈ 𝑆 ↔ 𝐵 ∈ 𝑆)) | 
| 50 | 19, 49 | mpbiri 258 | . . . . . 6
⊢ ((𝐴𝐹𝑤) = 𝐵 → (𝐴𝐹𝑤) ∈ 𝑆) | 
| 51 | 25, 26 | ndmovrcl 7619 | . . . . . 6
⊢ ((𝐴𝐹𝑤) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) | 
| 52 | 50, 51 | syl 17 | . . . . 5
⊢ ((𝐴𝐹𝑤) = 𝐵 → (𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) | 
| 53 | 52 | simpld 494 | . . . 4
⊢ ((𝐴𝐹𝑤) = 𝐵 → 𝐴 ∈ 𝑆) | 
| 54 | 53 | ancri 549 | . . 3
⊢ ((𝐴𝐹𝑤) = 𝐵 → (𝐴 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵)) | 
| 55 | 54 | moimi 2545 | . 2
⊢
(∃*𝑤(𝐴 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) → ∃*𝑤(𝐴𝐹𝑤) = 𝐵) | 
| 56 | 48, 55 | ax-mp 5 | 1
⊢
∃*𝑤(𝐴𝐹𝑤) = 𝐵 |