MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulasssr Structured version   Visualization version   GIF version

Theorem mulasssr 10514
Description: Multiplication of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
mulasssr ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶))

Proof of Theorem mulasssr
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 10480 . . 3 R = ((P × P) / ~R )
2 mulsrpr 10500 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
3 mulsrpr 10500 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)), ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))⟩] ~R )
4 mulsrpr 10500 . . 3 (((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) ∧ (𝑣P𝑢P)) → ([⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑣) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑢)), ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑢) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑣))⟩] ~R )
5 mulsrpr 10500 . . 3 (((𝑥P𝑦P) ∧ (((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P ∧ ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)), ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))⟩] ~R ) = [⟨((𝑥 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))) +P (𝑦 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))), ((𝑥 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) +P (𝑦 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))))⟩] ~R )
6 mulclpr 10444 . . . . . 6 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
7 mulclpr 10444 . . . . . 6 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
8 addclpr 10442 . . . . . 6 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
96, 7, 8syl2an 597 . . . . 5 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
109an4s 658 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
11 mulclpr 10444 . . . . . 6 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
12 mulclpr 10444 . . . . . 6 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
13 addclpr 10442 . . . . . 6 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1411, 12, 13syl2an 597 . . . . 5 (((𝑥P𝑤P) ∧ (𝑦P𝑧P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1514an42s 659 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1610, 15jca 514 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P))
17 mulclpr 10444 . . . . . 6 ((𝑧P𝑣P) → (𝑧 ·P 𝑣) ∈ P)
18 mulclpr 10444 . . . . . 6 ((𝑤P𝑢P) → (𝑤 ·P 𝑢) ∈ P)
19 addclpr 10442 . . . . . 6 (((𝑧 ·P 𝑣) ∈ P ∧ (𝑤 ·P 𝑢) ∈ P) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
2017, 18, 19syl2an 597 . . . . 5 (((𝑧P𝑣P) ∧ (𝑤P𝑢P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
2120an4s 658 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
22 mulclpr 10444 . . . . . 6 ((𝑧P𝑢P) → (𝑧 ·P 𝑢) ∈ P)
23 mulclpr 10444 . . . . . 6 ((𝑤P𝑣P) → (𝑤 ·P 𝑣) ∈ P)
24 addclpr 10442 . . . . . 6 (((𝑧 ·P 𝑢) ∈ P ∧ (𝑤 ·P 𝑣) ∈ P) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
2522, 23, 24syl2an 597 . . . . 5 (((𝑧P𝑢P) ∧ (𝑤P𝑣P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
2625an42s 659 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
2721, 26jca 514 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P ∧ ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P))
28 vex 3499 . . . 4 𝑥 ∈ V
29 vex 3499 . . . 4 𝑦 ∈ V
30 vex 3499 . . . 4 𝑧 ∈ V
31 mulcompr 10447 . . . 4 (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓)
32 distrpr 10452 . . . 4 (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P ))
33 vex 3499 . . . 4 𝑤 ∈ V
34 vex 3499 . . . 4 𝑣 ∈ V
35 mulasspr 10448 . . . 4 ((𝑓 ·P 𝑔) ·P ) = (𝑓 ·P (𝑔 ·P ))
36 vex 3499 . . . 4 𝑢 ∈ V
37 addcompr 10445 . . . 4 (𝑓 +P 𝑔) = (𝑔 +P 𝑓)
38 addasspr 10446 . . . 4 ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P ))
3928, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38caovlem2 7386 . . 3 ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑣) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑢)) = ((𝑥 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))) +P (𝑦 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))))
4028, 29, 30, 31, 32, 33, 36, 35, 34, 37, 38caovlem2 7386 . . 3 ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑢) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑣)) = ((𝑥 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) +P (𝑦 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))))
411, 2, 3, 4, 5, 16, 27, 39, 40ecovass 8406 . 2 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))
42 dmmulsr 10510 . . 3 dom ·R = (R × R)
43 0nsr 10503 . . 3 ¬ ∅ ∈ R
4442, 43ndmovass 7338 . 2 (¬ (𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))
4541, 44pm2.61i 184 1 ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 398  w3a 1083   = wceq 1537  wcel 2114  (class class class)co 7158  Pcnp 10283   +P cpp 10285   ·P cmp 10286   ~R cer 10288  Rcnr 10289   ·R cmr 10294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-ec 8293  df-qs 8297  df-ni 10296  df-pli 10297  df-mi 10298  df-lti 10299  df-plpq 10332  df-mpq 10333  df-ltpq 10334  df-enq 10335  df-nq 10336  df-erq 10337  df-plq 10338  df-mq 10339  df-1nq 10340  df-rq 10341  df-ltnq 10342  df-np 10405  df-plp 10407  df-mp 10408  df-ltp 10409  df-enr 10479  df-nr 10480  df-mr 10482
This theorem is referenced by:  sqgt0sr  10530  recexsr  10531  axmulass  10581
  Copyright terms: Public domain W3C validator