MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulasssr Structured version   Visualization version   GIF version

Theorem mulasssr 11130
Description: Multiplication of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
mulasssr ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶))

Proof of Theorem mulasssr
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 11096 . . 3 R = ((P × P) / ~R )
2 mulsrpr 11116 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
3 mulsrpr 11116 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)), ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))⟩] ~R )
4 mulsrpr 11116 . . 3 (((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) ∧ (𝑣P𝑢P)) → ([⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑣) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑢)), ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑢) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑣))⟩] ~R )
5 mulsrpr 11116 . . 3 (((𝑥P𝑦P) ∧ (((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P ∧ ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)), ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))⟩] ~R ) = [⟨((𝑥 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))) +P (𝑦 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))), ((𝑥 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) +P (𝑦 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))))⟩] ~R )
6 mulclpr 11060 . . . . . 6 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
7 mulclpr 11060 . . . . . 6 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
8 addclpr 11058 . . . . . 6 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
96, 7, 8syl2an 596 . . . . 5 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
109an4s 660 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
11 mulclpr 11060 . . . . . 6 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
12 mulclpr 11060 . . . . . 6 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
13 addclpr 11058 . . . . . 6 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1411, 12, 13syl2an 596 . . . . 5 (((𝑥P𝑤P) ∧ (𝑦P𝑧P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1514an42s 661 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1610, 15jca 511 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P))
17 mulclpr 11060 . . . . . 6 ((𝑧P𝑣P) → (𝑧 ·P 𝑣) ∈ P)
18 mulclpr 11060 . . . . . 6 ((𝑤P𝑢P) → (𝑤 ·P 𝑢) ∈ P)
19 addclpr 11058 . . . . . 6 (((𝑧 ·P 𝑣) ∈ P ∧ (𝑤 ·P 𝑢) ∈ P) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
2017, 18, 19syl2an 596 . . . . 5 (((𝑧P𝑣P) ∧ (𝑤P𝑢P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
2120an4s 660 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
22 mulclpr 11060 . . . . . 6 ((𝑧P𝑢P) → (𝑧 ·P 𝑢) ∈ P)
23 mulclpr 11060 . . . . . 6 ((𝑤P𝑣P) → (𝑤 ·P 𝑣) ∈ P)
24 addclpr 11058 . . . . . 6 (((𝑧 ·P 𝑢) ∈ P ∧ (𝑤 ·P 𝑣) ∈ P) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
2522, 23, 24syl2an 596 . . . . 5 (((𝑧P𝑢P) ∧ (𝑤P𝑣P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
2625an42s 661 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
2721, 26jca 511 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P ∧ ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P))
28 vex 3484 . . . 4 𝑥 ∈ V
29 vex 3484 . . . 4 𝑦 ∈ V
30 vex 3484 . . . 4 𝑧 ∈ V
31 mulcompr 11063 . . . 4 (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓)
32 distrpr 11068 . . . 4 (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P ))
33 vex 3484 . . . 4 𝑤 ∈ V
34 vex 3484 . . . 4 𝑣 ∈ V
35 mulasspr 11064 . . . 4 ((𝑓 ·P 𝑔) ·P ) = (𝑓 ·P (𝑔 ·P ))
36 vex 3484 . . . 4 𝑢 ∈ V
37 addcompr 11061 . . . 4 (𝑓 +P 𝑔) = (𝑔 +P 𝑓)
38 addasspr 11062 . . . 4 ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P ))
3928, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38caovlem2 7669 . . 3 ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑣) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑢)) = ((𝑥 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))) +P (𝑦 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))))
4028, 29, 30, 31, 32, 33, 36, 35, 34, 37, 38caovlem2 7669 . . 3 ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑢) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑣)) = ((𝑥 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) +P (𝑦 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))))
411, 2, 3, 4, 5, 16, 27, 39, 40ecovass 8864 . 2 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))
42 dmmulsr 11126 . . 3 dom ·R = (R × R)
43 0nsr 11119 . . 3 ¬ ∅ ∈ R
4442, 43ndmovass 7621 . 2 (¬ (𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))
4541, 44pm2.61i 182 1 ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1540  wcel 2108  (class class class)co 7431  Pcnp 10899   +P cpp 10901   ·P cmp 10902   ~R cer 10904  Rcnr 10905   ·R cmr 10910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-ni 10912  df-pli 10913  df-mi 10914  df-lti 10915  df-plpq 10948  df-mpq 10949  df-ltpq 10950  df-enq 10951  df-nq 10952  df-erq 10953  df-plq 10954  df-mq 10955  df-1nq 10956  df-rq 10957  df-ltnq 10958  df-np 11021  df-plp 11023  df-mp 11024  df-ltp 11025  df-enr 11095  df-nr 11096  df-mr 11098
This theorem is referenced by:  sqgt0sr  11146  recexsr  11147  axmulass  11197
  Copyright terms: Public domain W3C validator