MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulasssr Structured version   Visualization version   GIF version

Theorem mulasssr 10501
Description: Multiplication of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
mulasssr ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶))

Proof of Theorem mulasssr
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 10467 . . 3 R = ((P × P) / ~R )
2 mulsrpr 10487 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
3 mulsrpr 10487 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ([⟨𝑧, 𝑤⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)), ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))⟩] ~R )
4 mulsrpr 10487 . . 3 (((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) ∧ (𝑣P𝑢P)) → ([⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ·R [⟨𝑣, 𝑢⟩] ~R ) = [⟨((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑣) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑢)), ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑢) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑣))⟩] ~R )
5 mulsrpr 10487 . . 3 (((𝑥P𝑦P) ∧ (((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P ∧ ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)), ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))⟩] ~R ) = [⟨((𝑥 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))) +P (𝑦 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)))), ((𝑥 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) +P (𝑦 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))))⟩] ~R )
6 mulclpr 10431 . . . . . 6 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
7 mulclpr 10431 . . . . . 6 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
8 addclpr 10429 . . . . . 6 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
96, 7, 8syl2an 598 . . . . 5 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
109an4s 659 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
11 mulclpr 10431 . . . . . 6 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
12 mulclpr 10431 . . . . . 6 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
13 addclpr 10429 . . . . . 6 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1411, 12, 13syl2an 598 . . . . 5 (((𝑥P𝑤P) ∧ (𝑦P𝑧P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1514an42s 660 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1610, 15jca 515 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P))
17 mulclpr 10431 . . . . . 6 ((𝑧P𝑣P) → (𝑧 ·P 𝑣) ∈ P)
18 mulclpr 10431 . . . . . 6 ((𝑤P𝑢P) → (𝑤 ·P 𝑢) ∈ P)
19 addclpr 10429 . . . . . 6 (((𝑧 ·P 𝑣) ∈ P ∧ (𝑤 ·P 𝑢) ∈ P) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
2017, 18, 19syl2an 598 . . . . 5 (((𝑧P𝑣P) ∧ (𝑤P𝑢P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
2120an4s 659 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P)
22 mulclpr 10431 . . . . . 6 ((𝑧P𝑢P) → (𝑧 ·P 𝑢) ∈ P)
23 mulclpr 10431 . . . . . 6 ((𝑤P𝑣P) → (𝑤 ·P 𝑣) ∈ P)
24 addclpr 10429 . . . . . 6 (((𝑧 ·P 𝑢) ∈ P ∧ (𝑤 ·P 𝑣) ∈ P) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
2522, 23, 24syl2an 598 . . . . 5 (((𝑧P𝑢P) ∧ (𝑤P𝑣P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
2625an42s 660 . . . 4 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P)
2721, 26jca 515 . . 3 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢)) ∈ P ∧ ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣)) ∈ P))
28 vex 3444 . . . 4 𝑥 ∈ V
29 vex 3444 . . . 4 𝑦 ∈ V
30 vex 3444 . . . 4 𝑧 ∈ V
31 mulcompr 10434 . . . 4 (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓)
32 distrpr 10439 . . . 4 (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P ))
33 vex 3444 . . . 4 𝑤 ∈ V
34 vex 3444 . . . 4 𝑣 ∈ V
35 mulasspr 10435 . . . 4 ((𝑓 ·P 𝑔) ·P ) = (𝑓 ·P (𝑔 ·P ))
36 vex 3444 . . . 4 𝑢 ∈ V
37 addcompr 10432 . . . 4 (𝑓 +P 𝑔) = (𝑔 +P 𝑓)
38 addasspr 10433 . . . 4 ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P ))
3928, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38caovlem2 7364 . . 3 ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑣) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑢)) = ((𝑥 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))) +P (𝑦 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))))
4028, 29, 30, 31, 32, 33, 36, 35, 34, 37, 38caovlem2 7364 . . 3 ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ·P 𝑢) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ·P 𝑣)) = ((𝑥 ·P ((𝑧 ·P 𝑢) +P (𝑤 ·P 𝑣))) +P (𝑦 ·P ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑢))))
411, 2, 3, 4, 5, 16, 27, 39, 40ecovass 8387 . 2 ((𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))
42 dmmulsr 10497 . . 3 dom ·R = (R × R)
43 0nsr 10490 . . 3 ¬ ∅ ∈ R
4442, 43ndmovass 7316 . 2 (¬ (𝐴R𝐵R𝐶R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)))
4541, 44pm2.61i 185 1 ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3a 1084   = wceq 1538  wcel 2111  (class class class)co 7135  Pcnp 10270   +P cpp 10272   ·P cmp 10273   ~R cer 10275  Rcnr 10276   ·R cmr 10281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-omul 8090  df-er 8272  df-ec 8274  df-qs 8278  df-ni 10283  df-pli 10284  df-mi 10285  df-lti 10286  df-plpq 10319  df-mpq 10320  df-ltpq 10321  df-enq 10322  df-nq 10323  df-erq 10324  df-plq 10325  df-mq 10326  df-1nq 10327  df-rq 10328  df-ltnq 10329  df-np 10392  df-plp 10394  df-mp 10395  df-ltp 10396  df-enr 10466  df-nr 10467  df-mr 10469
This theorem is referenced by:  sqgt0sr  10517  recexsr  10518  axmulass  10568
  Copyright terms: Public domain W3C validator