Step | Hyp | Ref
| Expression |
1 | | df-nr 10812 |
. . 3
⊢
R = ((P × P) /
~R ) |
2 | | mulsrpr 10832 |
. . 3
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ([〈𝑥, 𝑦〉] ~R
·R [〈𝑧, 𝑤〉] ~R ) =
[〈((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)), ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))〉] ~R
) |
3 | | mulsrpr 10832 |
. . 3
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝑣 ∈
P ∧ 𝑢
∈ P)) → ([〈𝑧, 𝑤〉] ~R
·R [〈𝑣, 𝑢〉] ~R ) =
[〈((𝑧
·P 𝑣) +P (𝑤
·P 𝑢)), ((𝑧 ·P 𝑢) +P
(𝑤
·P 𝑣))〉] ~R
) |
4 | | mulsrpr 10832 |
. . 3
⊢
(((((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) ∈ P ∧ ((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) ∈ P) ∧ (𝑣 ∈ P ∧
𝑢 ∈ P))
→ ([〈((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)), ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧))〉] ~R
·R [〈𝑣, 𝑢〉] ~R ) =
[〈((((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) ·P 𝑣) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) ·P 𝑢)), ((((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) ·P 𝑢) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) ·P 𝑣))〉]
~R ) |
5 | | mulsrpr 10832 |
. . 3
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (((𝑧
·P 𝑣) +P (𝑤
·P 𝑢)) ∈ P ∧ ((𝑧
·P 𝑢) +P (𝑤
·P 𝑣)) ∈ P)) →
([〈𝑥, 𝑦〉]
~R ·R [〈((𝑧
·P 𝑣) +P (𝑤
·P 𝑢)), ((𝑧 ·P 𝑢) +P
(𝑤
·P 𝑣))〉] ~R ) =
[〈((𝑥
·P ((𝑧 ·P 𝑣) +P
(𝑤
·P 𝑢))) +P (𝑦
·P ((𝑧 ·P 𝑢) +P
(𝑤
·P 𝑣)))), ((𝑥 ·P ((𝑧
·P 𝑢) +P (𝑤
·P 𝑣))) +P (𝑦
·P ((𝑧 ·P 𝑣) +P
(𝑤
·P 𝑢))))〉] ~R
) |
6 | | mulclpr 10776 |
. . . . . 6
⊢ ((𝑥 ∈ P ∧
𝑧 ∈ P)
→ (𝑥
·P 𝑧) ∈ P) |
7 | | mulclpr 10776 |
. . . . . 6
⊢ ((𝑦 ∈ P ∧
𝑤 ∈ P)
→ (𝑦
·P 𝑤) ∈ P) |
8 | | addclpr 10774 |
. . . . . 6
⊢ (((𝑥
·P 𝑧) ∈ P ∧ (𝑦
·P 𝑤) ∈ P) → ((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) ∈ P) |
9 | 6, 7, 8 | syl2an 596 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑧 ∈ P)
∧ (𝑦 ∈
P ∧ 𝑤
∈ P)) → ((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) ∈ P) |
10 | 9 | an4s 657 |
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) ∈ P) |
11 | | mulclpr 10776 |
. . . . . 6
⊢ ((𝑥 ∈ P ∧
𝑤 ∈ P)
→ (𝑥
·P 𝑤) ∈ P) |
12 | | mulclpr 10776 |
. . . . . 6
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (𝑦
·P 𝑧) ∈ P) |
13 | | addclpr 10774 |
. . . . . 6
⊢ (((𝑥
·P 𝑤) ∈ P ∧ (𝑦
·P 𝑧) ∈ P) → ((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) ∈ P) |
14 | 11, 12, 13 | syl2an 596 |
. . . . 5
⊢ (((𝑥 ∈ P ∧
𝑤 ∈ P)
∧ (𝑦 ∈
P ∧ 𝑧
∈ P)) → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) ∈ P) |
15 | 14 | an42s 658 |
. . . 4
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → ((𝑥 ·P 𝑤) +P
(𝑦
·P 𝑧)) ∈ P) |
16 | 10, 15 | jca 512 |
. . 3
⊢ (((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ (𝑧 ∈
P ∧ 𝑤
∈ P)) → (((𝑥 ·P 𝑧) +P
(𝑦
·P 𝑤)) ∈ P ∧ ((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) ∈ P)) |
17 | | mulclpr 10776 |
. . . . . 6
⊢ ((𝑧 ∈ P ∧
𝑣 ∈ P)
→ (𝑧
·P 𝑣) ∈ P) |
18 | | mulclpr 10776 |
. . . . . 6
⊢ ((𝑤 ∈ P ∧
𝑢 ∈ P)
→ (𝑤
·P 𝑢) ∈ P) |
19 | | addclpr 10774 |
. . . . . 6
⊢ (((𝑧
·P 𝑣) ∈ P ∧ (𝑤
·P 𝑢) ∈ P) → ((𝑧
·P 𝑣) +P (𝑤
·P 𝑢)) ∈ P) |
20 | 17, 18, 19 | syl2an 596 |
. . . . 5
⊢ (((𝑧 ∈ P ∧
𝑣 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑢
∈ P)) → ((𝑧 ·P 𝑣) +P
(𝑤
·P 𝑢)) ∈ P) |
21 | 20 | an4s 657 |
. . . 4
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝑣 ∈
P ∧ 𝑢
∈ P)) → ((𝑧 ·P 𝑣) +P
(𝑤
·P 𝑢)) ∈ P) |
22 | | mulclpr 10776 |
. . . . . 6
⊢ ((𝑧 ∈ P ∧
𝑢 ∈ P)
→ (𝑧
·P 𝑢) ∈ P) |
23 | | mulclpr 10776 |
. . . . . 6
⊢ ((𝑤 ∈ P ∧
𝑣 ∈ P)
→ (𝑤
·P 𝑣) ∈ P) |
24 | | addclpr 10774 |
. . . . . 6
⊢ (((𝑧
·P 𝑢) ∈ P ∧ (𝑤
·P 𝑣) ∈ P) → ((𝑧
·P 𝑢) +P (𝑤
·P 𝑣)) ∈ P) |
25 | 22, 23, 24 | syl2an 596 |
. . . . 5
⊢ (((𝑧 ∈ P ∧
𝑢 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → ((𝑧 ·P 𝑢) +P
(𝑤
·P 𝑣)) ∈ P) |
26 | 25 | an42s 658 |
. . . 4
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝑣 ∈
P ∧ 𝑢
∈ P)) → ((𝑧 ·P 𝑢) +P
(𝑤
·P 𝑣)) ∈ P) |
27 | 21, 26 | jca 512 |
. . 3
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝑣 ∈
P ∧ 𝑢
∈ P)) → (((𝑧 ·P 𝑣) +P
(𝑤
·P 𝑢)) ∈ P ∧ ((𝑧
·P 𝑢) +P (𝑤
·P 𝑣)) ∈ P)) |
28 | | vex 3436 |
. . . 4
⊢ 𝑥 ∈ V |
29 | | vex 3436 |
. . . 4
⊢ 𝑦 ∈ V |
30 | | vex 3436 |
. . . 4
⊢ 𝑧 ∈ V |
31 | | mulcompr 10779 |
. . . 4
⊢ (𝑓
·P 𝑔) = (𝑔 ·P 𝑓) |
32 | | distrpr 10784 |
. . . 4
⊢ (𝑓
·P (𝑔 +P ℎ)) = ((𝑓 ·P 𝑔) +P
(𝑓
·P ℎ)) |
33 | | vex 3436 |
. . . 4
⊢ 𝑤 ∈ V |
34 | | vex 3436 |
. . . 4
⊢ 𝑣 ∈ V |
35 | | mulasspr 10780 |
. . . 4
⊢ ((𝑓
·P 𝑔) ·P ℎ) = (𝑓 ·P (𝑔
·P ℎ)) |
36 | | vex 3436 |
. . . 4
⊢ 𝑢 ∈ V |
37 | | addcompr 10777 |
. . . 4
⊢ (𝑓 +P
𝑔) = (𝑔 +P 𝑓) |
38 | | addasspr 10778 |
. . . 4
⊢ ((𝑓 +P
𝑔)
+P ℎ) = (𝑓 +P (𝑔 +P
ℎ)) |
39 | 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38 | caovlem2 7508 |
. . 3
⊢ ((((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) ·P 𝑣) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) ·P 𝑢)) = ((𝑥 ·P ((𝑧
·P 𝑣) +P (𝑤
·P 𝑢))) +P (𝑦
·P ((𝑧 ·P 𝑢) +P
(𝑤
·P 𝑣)))) |
40 | 28, 29, 30, 31, 32, 33, 36, 35, 34, 37, 38 | caovlem2 7508 |
. . 3
⊢ ((((𝑥
·P 𝑧) +P (𝑦
·P 𝑤)) ·P 𝑢) +P
(((𝑥
·P 𝑤) +P (𝑦
·P 𝑧)) ·P 𝑣)) = ((𝑥 ·P ((𝑧
·P 𝑢) +P (𝑤
·P 𝑣))) +P (𝑦
·P ((𝑧 ·P 𝑣) +P
(𝑤
·P 𝑢)))) |
41 | 1, 2, 3, 4, 5, 16,
27, 39, 40 | ecovass 8613 |
. 2
⊢ ((𝐴 ∈ R ∧
𝐵 ∈ R
∧ 𝐶 ∈
R) → ((𝐴
·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵
·R 𝐶))) |
42 | | dmmulsr 10842 |
. . 3
⊢ dom
·R = (R ×
R) |
43 | | 0nsr 10835 |
. . 3
⊢ ¬
∅ ∈ R |
44 | 42, 43 | ndmovass 7460 |
. 2
⊢ (¬
(𝐴 ∈ R
∧ 𝐵 ∈
R ∧ 𝐶
∈ R) → ((𝐴 ·R 𝐵)
·R 𝐶) = (𝐴 ·R (𝐵
·R 𝐶))) |
45 | 41, 44 | pm2.61i 182 |
1
⊢ ((𝐴
·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵
·R 𝐶)) |