Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvralfwOLD Structured version   Visualization version   GIF version

Theorem cbvralfwOLD 3421
 Description: Obsolete version of cbvralfw 3420 as of 23-May-2024. (Contributed by NM, 7-Mar-2004.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvralfwOLD.1 𝑥𝐴
cbvralfwOLD.2 𝑦𝐴
cbvralfwOLD.3 𝑦𝜑
cbvralfwOLD.4 𝑥𝜓
cbvralfwOLD.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvralfwOLD (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvralfwOLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1916 . . . 4 𝑧(𝑥𝐴𝜑)
2 cbvralfwOLD.1 . . . . . 6 𝑥𝐴
32nfcri 2969 . . . . 5 𝑥 𝑧𝐴
4 nfs1v 2161 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfim 1898 . . . 4 𝑥(𝑧𝐴 → [𝑧 / 𝑥]𝜑)
6 eleq1w 2898 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
7 sbequ12 2255 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
86, 7imbi12d 348 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝐴 → [𝑧 / 𝑥]𝜑)))
91, 5, 8cbvalv1 2363 . . 3 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑧(𝑧𝐴 → [𝑧 / 𝑥]𝜑))
10 cbvralfwOLD.2 . . . . . 6 𝑦𝐴
1110nfcri 2969 . . . . 5 𝑦 𝑧𝐴
12 cbvralfwOLD.3 . . . . . 6 𝑦𝜑
1312nfsbv 2351 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1411, 13nfim 1898 . . . 4 𝑦(𝑧𝐴 → [𝑧 / 𝑥]𝜑)
15 nfv 1916 . . . 4 𝑧(𝑦𝐴𝜓)
16 eleq1w 2898 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
17 sbequ 2091 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
18 cbvralfwOLD.4 . . . . . . 7 𝑥𝜓
19 cbvralfwOLD.5 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
2018, 19sbiev 2332 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
2117, 20syl6bb 290 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
2216, 21imbi12d 348 . . . 4 (𝑧 = 𝑦 → ((𝑧𝐴 → [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐴𝜓)))
2314, 15, 22cbvalv1 2363 . . 3 (∀𝑧(𝑧𝐴 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑦(𝑦𝐴𝜓))
249, 23bitri 278 . 2 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑦(𝑦𝐴𝜓))
25 df-ral 3138 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
26 df-ral 3138 . 2 (∀𝑦𝐴 𝜓 ↔ ∀𝑦(𝑦𝐴𝜓))
2724, 25, 263bitr4i 306 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  ∀wal 1536  Ⅎwnf 1785  [wsb 2070   ∈ wcel 2115  Ⅎwnfc 2962  ∀wral 3133 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-10 2146  ax-11 2162  ax-12 2179 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2071  df-clel 2896  df-nfc 2964  df-ral 3138 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator