MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds Structured version   Visualization version   GIF version

Theorem tfinds 7897
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. Theorem 1.19 of [Schloeder] p. 3. (Contributed by NM, 16-Apr-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
tfinds.1 (𝑥 = ∅ → (𝜑𝜓))
tfinds.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfinds.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfinds.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfinds.5 𝜓
tfinds.6 (𝑦 ∈ On → (𝜒𝜃))
tfinds.7 (Lim 𝑥 → (∀𝑦𝑥 𝜒𝜑))
Assertion
Ref Expression
tfinds (𝐴 ∈ On → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑥,𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfinds
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tfinds.2 . 2 (𝑥 = 𝑦 → (𝜑𝜒))
2 tfinds.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
3 dflim3 7884 . . . . 5 (Lim 𝑥 ↔ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
43notbii 320 . . . 4 (¬ Lim 𝑥 ↔ ¬ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
5 iman 401 . . . . 5 ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) ↔ ¬ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
6 eloni 6405 . . . . . . 7 (𝑥 ∈ On → Ord 𝑥)
7 pm2.27 42 . . . . . . 7 (Ord 𝑥 → ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
86, 7syl 17 . . . . . 6 (𝑥 ∈ On → ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
9 tfinds.5 . . . . . . . . 9 𝜓
10 tfinds.1 . . . . . . . . 9 (𝑥 = ∅ → (𝜑𝜓))
119, 10mpbiri 258 . . . . . . . 8 (𝑥 = ∅ → 𝜑)
1211a1d 25 . . . . . . 7 (𝑥 = ∅ → (∀𝑦𝑥 𝜒𝜑))
13 nfra1 3290 . . . . . . . . 9 𝑦𝑦𝑥 𝜒
14 nfv 1913 . . . . . . . . 9 𝑦𝜑
1513, 14nfim 1895 . . . . . . . 8 𝑦(∀𝑦𝑥 𝜒𝜑)
16 vex 3492 . . . . . . . . . . . . 13 𝑦 ∈ V
1716sucid 6477 . . . . . . . . . . . 12 𝑦 ∈ suc 𝑦
181rspcv 3631 . . . . . . . . . . . 12 (𝑦 ∈ suc 𝑦 → (∀𝑥 ∈ suc 𝑦𝜑𝜒))
1917, 18ax-mp 5 . . . . . . . . . . 11 (∀𝑥 ∈ suc 𝑦𝜑𝜒)
20 tfinds.6 . . . . . . . . . . 11 (𝑦 ∈ On → (𝜒𝜃))
2119, 20syl5 34 . . . . . . . . . 10 (𝑦 ∈ On → (∀𝑥 ∈ suc 𝑦𝜑𝜃))
22 raleq 3331 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (∀𝑧𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ suc 𝑦[𝑧 / 𝑥]𝜑))
23 nfv 1913 . . . . . . . . . . . . . . 15 𝑥𝜒
2423, 1sbiev 2318 . . . . . . . . . . . . . 14 ([𝑦 / 𝑥]𝜑𝜒)
25 sbequ 2083 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
2624, 25bitr3id 285 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝜒 ↔ [𝑧 / 𝑥]𝜑))
2726cbvralvw 3243 . . . . . . . . . . . 12 (∀𝑦𝑥 𝜒 ↔ ∀𝑧𝑥 [𝑧 / 𝑥]𝜑)
28 cbvralsvw 3323 . . . . . . . . . . . 12 (∀𝑥 ∈ suc 𝑦𝜑 ↔ ∀𝑧 ∈ suc 𝑦[𝑧 / 𝑥]𝜑)
2922, 27, 283bitr4g 314 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒 ↔ ∀𝑥 ∈ suc 𝑦𝜑))
3029imbi1d 341 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((∀𝑦𝑥 𝜒𝜃) ↔ (∀𝑥 ∈ suc 𝑦𝜑𝜃)))
3121, 30syl5ibrcom 247 . . . . . . . . 9 (𝑦 ∈ On → (𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒𝜃)))
32 tfinds.3 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝜑𝜃))
3332biimprd 248 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (𝜃𝜑))
3433a1i 11 . . . . . . . . 9 (𝑦 ∈ On → (𝑥 = suc 𝑦 → (𝜃𝜑)))
3531, 34syldd 72 . . . . . . . 8 (𝑦 ∈ On → (𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒𝜑)))
3615, 35rexlimi 3265 . . . . . . 7 (∃𝑦 ∈ On 𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒𝜑))
3712, 36jaoi 856 . . . . . 6 ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) → (∀𝑦𝑥 𝜒𝜑))
388, 37syl6 35 . . . . 5 (𝑥 ∈ On → ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (∀𝑦𝑥 𝜒𝜑)))
395, 38biimtrrid 243 . . . 4 (𝑥 ∈ On → (¬ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (∀𝑦𝑥 𝜒𝜑)))
404, 39biimtrid 242 . . 3 (𝑥 ∈ On → (¬ Lim 𝑥 → (∀𝑦𝑥 𝜒𝜑)))
41 tfinds.7 . . 3 (Lim 𝑥 → (∀𝑦𝑥 𝜒𝜑))
4240, 41pm2.61d2 181 . 2 (𝑥 ∈ On → (∀𝑦𝑥 𝜒𝜑))
431, 2, 42tfis3 7895 1 (𝐴 ∈ On → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  [wsb 2064  wcel 2108  wral 3067  wrex 3076  c0 4352  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401
This theorem is referenced by:  tfindsg  7898  tfindes  7900  tfinds3  7902  oa0r  8594  om0r  8595  om1r  8599  oe1m  8601  oeoalem  8652  r1sdom  9843  r1tr  9845  alephon  10138  alephcard  10139  alephordi  10143  constrsscn  33730  constr01  33732  constrmon  33734  constrconj  33735  rdgprc  35758
  Copyright terms: Public domain W3C validator