MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds Structured version   Visualization version   GIF version

Theorem tfinds 7816
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. Theorem 1.19 of [Schloeder] p. 3. (Contributed by NM, 16-Apr-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
tfinds.1 (𝑥 = ∅ → (𝜑𝜓))
tfinds.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfinds.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfinds.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfinds.5 𝜓
tfinds.6 (𝑦 ∈ On → (𝜒𝜃))
tfinds.7 (Lim 𝑥 → (∀𝑦𝑥 𝜒𝜑))
Assertion
Ref Expression
tfinds (𝐴 ∈ On → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑥,𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfinds
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tfinds.2 . 2 (𝑥 = 𝑦 → (𝜑𝜒))
2 tfinds.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
3 dflim3 7803 . . . . 5 (Lim 𝑥 ↔ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
43notbii 320 . . . 4 (¬ Lim 𝑥 ↔ ¬ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
5 iman 401 . . . . 5 ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) ↔ ¬ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
6 eloni 6330 . . . . . . 7 (𝑥 ∈ On → Ord 𝑥)
7 pm2.27 42 . . . . . . 7 (Ord 𝑥 → ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
86, 7syl 17 . . . . . 6 (𝑥 ∈ On → ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
9 tfinds.5 . . . . . . . . 9 𝜓
10 tfinds.1 . . . . . . . . 9 (𝑥 = ∅ → (𝜑𝜓))
119, 10mpbiri 258 . . . . . . . 8 (𝑥 = ∅ → 𝜑)
1211a1d 25 . . . . . . 7 (𝑥 = ∅ → (∀𝑦𝑥 𝜒𝜑))
13 nfra1 3259 . . . . . . . . 9 𝑦𝑦𝑥 𝜒
14 nfv 1914 . . . . . . . . 9 𝑦𝜑
1513, 14nfim 1896 . . . . . . . 8 𝑦(∀𝑦𝑥 𝜒𝜑)
16 vex 3448 . . . . . . . . . . . . 13 𝑦 ∈ V
1716sucid 6404 . . . . . . . . . . . 12 𝑦 ∈ suc 𝑦
181rspcv 3581 . . . . . . . . . . . 12 (𝑦 ∈ suc 𝑦 → (∀𝑥 ∈ suc 𝑦𝜑𝜒))
1917, 18ax-mp 5 . . . . . . . . . . 11 (∀𝑥 ∈ suc 𝑦𝜑𝜒)
20 tfinds.6 . . . . . . . . . . 11 (𝑦 ∈ On → (𝜒𝜃))
2119, 20syl5 34 . . . . . . . . . 10 (𝑦 ∈ On → (∀𝑥 ∈ suc 𝑦𝜑𝜃))
22 raleq 3293 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (∀𝑧𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ suc 𝑦[𝑧 / 𝑥]𝜑))
23 nfv 1914 . . . . . . . . . . . . . . 15 𝑥𝜒
2423, 1sbiev 2313 . . . . . . . . . . . . . 14 ([𝑦 / 𝑥]𝜑𝜒)
25 sbequ 2084 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
2624, 25bitr3id 285 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝜒 ↔ [𝑧 / 𝑥]𝜑))
2726cbvralvw 3213 . . . . . . . . . . . 12 (∀𝑦𝑥 𝜒 ↔ ∀𝑧𝑥 [𝑧 / 𝑥]𝜑)
28 cbvralsvw 3287 . . . . . . . . . . . 12 (∀𝑥 ∈ suc 𝑦𝜑 ↔ ∀𝑧 ∈ suc 𝑦[𝑧 / 𝑥]𝜑)
2922, 27, 283bitr4g 314 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒 ↔ ∀𝑥 ∈ suc 𝑦𝜑))
3029imbi1d 341 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((∀𝑦𝑥 𝜒𝜃) ↔ (∀𝑥 ∈ suc 𝑦𝜑𝜃)))
3121, 30syl5ibrcom 247 . . . . . . . . 9 (𝑦 ∈ On → (𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒𝜃)))
32 tfinds.3 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝜑𝜃))
3332biimprd 248 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (𝜃𝜑))
3433a1i 11 . . . . . . . . 9 (𝑦 ∈ On → (𝑥 = suc 𝑦 → (𝜃𝜑)))
3531, 34syldd 72 . . . . . . . 8 (𝑦 ∈ On → (𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒𝜑)))
3615, 35rexlimi 3235 . . . . . . 7 (∃𝑦 ∈ On 𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒𝜑))
3712, 36jaoi 857 . . . . . 6 ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) → (∀𝑦𝑥 𝜒𝜑))
388, 37syl6 35 . . . . 5 (𝑥 ∈ On → ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (∀𝑦𝑥 𝜒𝜑)))
395, 38biimtrrid 243 . . . 4 (𝑥 ∈ On → (¬ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (∀𝑦𝑥 𝜒𝜑)))
404, 39biimtrid 242 . . 3 (𝑥 ∈ On → (¬ Lim 𝑥 → (∀𝑦𝑥 𝜒𝜑)))
41 tfinds.7 . . 3 (Lim 𝑥 → (∀𝑦𝑥 𝜒𝜑))
4240, 41pm2.61d2 181 . 2 (𝑥 ∈ On → (∀𝑦𝑥 𝜒𝜑))
431, 2, 42tfis3 7814 1 (𝐴 ∈ On → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  [wsb 2065  wcel 2109  wral 3044  wrex 3053  c0 4292  Ord word 6319  Oncon0 6320  Lim wlim 6321  suc csuc 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326
This theorem is referenced by:  tfindsg  7817  tfindes  7819  tfinds3  7821  oa0r  8479  om0r  8480  om1r  8484  oe1m  8486  oeoalem  8537  r1sdom  9703  r1tr  9705  alephon  9998  alephcard  9999  alephordi  10003  constrsscn  33723  constr01  33725  constrmon  33727  constrconj  33728  rdgprc  35775
  Copyright terms: Public domain W3C validator