MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds Structured version   Visualization version   GIF version

Theorem tfinds 7706
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 16-Apr-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
tfinds.1 (𝑥 = ∅ → (𝜑𝜓))
tfinds.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfinds.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfinds.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfinds.5 𝜓
tfinds.6 (𝑦 ∈ On → (𝜒𝜃))
tfinds.7 (Lim 𝑥 → (∀𝑦𝑥 𝜒𝜑))
Assertion
Ref Expression
tfinds (𝐴 ∈ On → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑥,𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfinds
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tfinds.2 . 2 (𝑥 = 𝑦 → (𝜑𝜒))
2 tfinds.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
3 dflim3 7694 . . . . 5 (Lim 𝑥 ↔ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
43notbii 320 . . . 4 (¬ Lim 𝑥 ↔ ¬ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
5 iman 402 . . . . 5 ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) ↔ ¬ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
6 eloni 6276 . . . . . . 7 (𝑥 ∈ On → Ord 𝑥)
7 pm2.27 42 . . . . . . 7 (Ord 𝑥 → ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
86, 7syl 17 . . . . . 6 (𝑥 ∈ On → ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
9 tfinds.5 . . . . . . . . 9 𝜓
10 tfinds.1 . . . . . . . . 9 (𝑥 = ∅ → (𝜑𝜓))
119, 10mpbiri 257 . . . . . . . 8 (𝑥 = ∅ → 𝜑)
1211a1d 25 . . . . . . 7 (𝑥 = ∅ → (∀𝑦𝑥 𝜒𝜑))
13 nfra1 3144 . . . . . . . . 9 𝑦𝑦𝑥 𝜒
14 nfv 1917 . . . . . . . . 9 𝑦𝜑
1513, 14nfim 1899 . . . . . . . 8 𝑦(∀𝑦𝑥 𝜒𝜑)
16 vex 3436 . . . . . . . . . . . . 13 𝑦 ∈ V
1716sucid 6345 . . . . . . . . . . . 12 𝑦 ∈ suc 𝑦
181rspcv 3557 . . . . . . . . . . . 12 (𝑦 ∈ suc 𝑦 → (∀𝑥 ∈ suc 𝑦𝜑𝜒))
1917, 18ax-mp 5 . . . . . . . . . . 11 (∀𝑥 ∈ suc 𝑦𝜑𝜒)
20 tfinds.6 . . . . . . . . . . 11 (𝑦 ∈ On → (𝜒𝜃))
2119, 20syl5 34 . . . . . . . . . 10 (𝑦 ∈ On → (∀𝑥 ∈ suc 𝑦𝜑𝜃))
22 raleq 3342 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (∀𝑧𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ suc 𝑦[𝑧 / 𝑥]𝜑))
23 nfv 1917 . . . . . . . . . . . . . . 15 𝑥𝜒
2423, 1sbiev 2309 . . . . . . . . . . . . . 14 ([𝑦 / 𝑥]𝜑𝜒)
25 sbequ 2086 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
2624, 25bitr3id 285 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝜒 ↔ [𝑧 / 𝑥]𝜑))
2726cbvralvw 3383 . . . . . . . . . . . 12 (∀𝑦𝑥 𝜒 ↔ ∀𝑧𝑥 [𝑧 / 𝑥]𝜑)
28 cbvralsvw 3402 . . . . . . . . . . . 12 (∀𝑥 ∈ suc 𝑦𝜑 ↔ ∀𝑧 ∈ suc 𝑦[𝑧 / 𝑥]𝜑)
2922, 27, 283bitr4g 314 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒 ↔ ∀𝑥 ∈ suc 𝑦𝜑))
3029imbi1d 342 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((∀𝑦𝑥 𝜒𝜃) ↔ (∀𝑥 ∈ suc 𝑦𝜑𝜃)))
3121, 30syl5ibrcom 246 . . . . . . . . 9 (𝑦 ∈ On → (𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒𝜃)))
32 tfinds.3 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝜑𝜃))
3332biimprd 247 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (𝜃𝜑))
3433a1i 11 . . . . . . . . 9 (𝑦 ∈ On → (𝑥 = suc 𝑦 → (𝜃𝜑)))
3531, 34syldd 72 . . . . . . . 8 (𝑦 ∈ On → (𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒𝜑)))
3615, 35rexlimi 3248 . . . . . . 7 (∃𝑦 ∈ On 𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒𝜑))
3712, 36jaoi 854 . . . . . 6 ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) → (∀𝑦𝑥 𝜒𝜑))
388, 37syl6 35 . . . . 5 (𝑥 ∈ On → ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (∀𝑦𝑥 𝜒𝜑)))
395, 38syl5bir 242 . . . 4 (𝑥 ∈ On → (¬ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (∀𝑦𝑥 𝜒𝜑)))
404, 39syl5bi 241 . . 3 (𝑥 ∈ On → (¬ Lim 𝑥 → (∀𝑦𝑥 𝜒𝜑)))
41 tfinds.7 . . 3 (Lim 𝑥 → (∀𝑦𝑥 𝜒𝜑))
4240, 41pm2.61d2 181 . 2 (𝑥 ∈ On → (∀𝑦𝑥 𝜒𝜑))
431, 2, 42tfis3 7704 1 (𝐴 ∈ On → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  [wsb 2067  wcel 2106  wral 3064  wrex 3065  c0 4256  Ord word 6265  Oncon0 6266  Lim wlim 6267  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272
This theorem is referenced by:  tfindsg  7707  tfindes  7709  tfinds3  7711  oa0r  8368  om0r  8369  om1r  8374  oe1m  8376  oeoalem  8427  r1sdom  9532  r1tr  9534  alephon  9825  alephcard  9826  alephordi  9830  rdgprc  33770
  Copyright terms: Public domain W3C validator