MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds Structured version   Visualization version   GIF version

Theorem tfinds 7860
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. Theorem 1.19 of [Schloeder] p. 3. (Contributed by NM, 16-Apr-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
tfinds.1 (𝑥 = ∅ → (𝜑𝜓))
tfinds.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfinds.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfinds.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfinds.5 𝜓
tfinds.6 (𝑦 ∈ On → (𝜒𝜃))
tfinds.7 (Lim 𝑥 → (∀𝑦𝑥 𝜒𝜑))
Assertion
Ref Expression
tfinds (𝐴 ∈ On → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑥,𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfinds
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tfinds.2 . 2 (𝑥 = 𝑦 → (𝜑𝜒))
2 tfinds.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
3 dflim3 7847 . . . . 5 (Lim 𝑥 ↔ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
43notbii 320 . . . 4 (¬ Lim 𝑥 ↔ ¬ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
5 iman 401 . . . . 5 ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) ↔ ¬ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
6 eloni 6367 . . . . . . 7 (𝑥 ∈ On → Ord 𝑥)
7 pm2.27 42 . . . . . . 7 (Ord 𝑥 → ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
86, 7syl 17 . . . . . 6 (𝑥 ∈ On → ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)))
9 tfinds.5 . . . . . . . . 9 𝜓
10 tfinds.1 . . . . . . . . 9 (𝑥 = ∅ → (𝜑𝜓))
119, 10mpbiri 258 . . . . . . . 8 (𝑥 = ∅ → 𝜑)
1211a1d 25 . . . . . . 7 (𝑥 = ∅ → (∀𝑦𝑥 𝜒𝜑))
13 nfra1 3270 . . . . . . . . 9 𝑦𝑦𝑥 𝜒
14 nfv 1914 . . . . . . . . 9 𝑦𝜑
1513, 14nfim 1896 . . . . . . . 8 𝑦(∀𝑦𝑥 𝜒𝜑)
16 vex 3468 . . . . . . . . . . . . 13 𝑦 ∈ V
1716sucid 6441 . . . . . . . . . . . 12 𝑦 ∈ suc 𝑦
181rspcv 3602 . . . . . . . . . . . 12 (𝑦 ∈ suc 𝑦 → (∀𝑥 ∈ suc 𝑦𝜑𝜒))
1917, 18ax-mp 5 . . . . . . . . . . 11 (∀𝑥 ∈ suc 𝑦𝜑𝜒)
20 tfinds.6 . . . . . . . . . . 11 (𝑦 ∈ On → (𝜒𝜃))
2119, 20syl5 34 . . . . . . . . . 10 (𝑦 ∈ On → (∀𝑥 ∈ suc 𝑦𝜑𝜃))
22 raleq 3306 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (∀𝑧𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ suc 𝑦[𝑧 / 𝑥]𝜑))
23 nfv 1914 . . . . . . . . . . . . . . 15 𝑥𝜒
2423, 1sbiev 2315 . . . . . . . . . . . . . 14 ([𝑦 / 𝑥]𝜑𝜒)
25 sbequ 2084 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
2624, 25bitr3id 285 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝜒 ↔ [𝑧 / 𝑥]𝜑))
2726cbvralvw 3224 . . . . . . . . . . . 12 (∀𝑦𝑥 𝜒 ↔ ∀𝑧𝑥 [𝑧 / 𝑥]𝜑)
28 cbvralsvw 3300 . . . . . . . . . . . 12 (∀𝑥 ∈ suc 𝑦𝜑 ↔ ∀𝑧 ∈ suc 𝑦[𝑧 / 𝑥]𝜑)
2922, 27, 283bitr4g 314 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒 ↔ ∀𝑥 ∈ suc 𝑦𝜑))
3029imbi1d 341 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((∀𝑦𝑥 𝜒𝜃) ↔ (∀𝑥 ∈ suc 𝑦𝜑𝜃)))
3121, 30syl5ibrcom 247 . . . . . . . . 9 (𝑦 ∈ On → (𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒𝜃)))
32 tfinds.3 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝜑𝜃))
3332biimprd 248 . . . . . . . . . 10 (𝑥 = suc 𝑦 → (𝜃𝜑))
3433a1i 11 . . . . . . . . 9 (𝑦 ∈ On → (𝑥 = suc 𝑦 → (𝜃𝜑)))
3531, 34syldd 72 . . . . . . . 8 (𝑦 ∈ On → (𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒𝜑)))
3615, 35rexlimi 3246 . . . . . . 7 (∃𝑦 ∈ On 𝑥 = suc 𝑦 → (∀𝑦𝑥 𝜒𝜑))
3712, 36jaoi 857 . . . . . 6 ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦) → (∀𝑦𝑥 𝜒𝜑))
388, 37syl6 35 . . . . 5 (𝑥 ∈ On → ((Ord 𝑥 → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (∀𝑦𝑥 𝜒𝜑)))
395, 38biimtrrid 243 . . . 4 (𝑥 ∈ On → (¬ (Ord 𝑥 ∧ ¬ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)) → (∀𝑦𝑥 𝜒𝜑)))
404, 39biimtrid 242 . . 3 (𝑥 ∈ On → (¬ Lim 𝑥 → (∀𝑦𝑥 𝜒𝜑)))
41 tfinds.7 . . 3 (Lim 𝑥 → (∀𝑦𝑥 𝜒𝜑))
4240, 41pm2.61d2 181 . 2 (𝑥 ∈ On → (∀𝑦𝑥 𝜒𝜑))
431, 2, 42tfis3 7858 1 (𝐴 ∈ On → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  [wsb 2065  wcel 2109  wral 3052  wrex 3061  c0 4313  Ord word 6356  Oncon0 6357  Lim wlim 6358  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363
This theorem is referenced by:  tfindsg  7861  tfindes  7863  tfinds3  7865  oa0r  8555  om0r  8556  om1r  8560  oe1m  8562  oeoalem  8613  r1sdom  9793  r1tr  9795  alephon  10088  alephcard  10089  alephordi  10093  constrsscn  33779  constr01  33781  constrmon  33783  constrconj  33784  rdgprc  35817
  Copyright terms: Public domain W3C validator