Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0min Structured version   Visualization version   GIF version

Theorem nn0min 30538
Description: Extracting the minimum positive integer for which a property 𝜒 does not hold. This uses substitutions similar to nn0ind 12080. (Contributed by Thierry Arnoux, 6-May-2018.)
Hypotheses
Ref Expression
nn0min.0 (𝑛 = 0 → (𝜓𝜒))
nn0min.1 (𝑛 = 𝑚 → (𝜓𝜃))
nn0min.2 (𝑛 = (𝑚 + 1) → (𝜓𝜏))
nn0min.3 (𝜑 → ¬ 𝜒)
nn0min.4 (𝜑 → ∃𝑛 ∈ ℕ 𝜓)
Assertion
Ref Expression
nn0min (𝜑 → ∃𝑚 ∈ ℕ0𝜃𝜏))
Distinct variable groups:   𝑚,𝑛,𝜑   𝜓,𝑚   𝜏,𝑛   𝜃,𝑛   𝜒,𝑚,𝑛
Allowed substitution hints:   𝜓(𝑛)   𝜃(𝑚)   𝜏(𝑚)

Proof of Theorem nn0min
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0min.4 . . . . 5 (𝜑 → ∃𝑛 ∈ ℕ 𝜓)
21adantr 483 . . . 4 ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ∃𝑛 ∈ ℕ 𝜓)
3 nfv 1915 . . . . . . . . . 10 𝑚𝜑
4 nfra1 3221 . . . . . . . . . 10 𝑚𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)
53, 4nfan 1900 . . . . . . . . 9 𝑚(𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏))
6 nfv 1915 . . . . . . . . 9 𝑚 ¬ [𝑘 / 𝑛]𝜓
75, 6nfim 1897 . . . . . . . 8 𝑚((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓)
8 dfsbcq2 3777 . . . . . . . . . 10 (𝑘 = 1 → ([𝑘 / 𝑛]𝜓[1 / 𝑛]𝜓))
98notbid 320 . . . . . . . . 9 (𝑘 = 1 → (¬ [𝑘 / 𝑛]𝜓 ↔ ¬ [1 / 𝑛]𝜓))
109imbi2d 343 . . . . . . . 8 (𝑘 = 1 → (((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [1 / 𝑛]𝜓)))
11 nfv 1915 . . . . . . . . . . 11 𝑛𝜃
12 nn0min.1 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝜓𝜃))
1311, 12sbhypf 3554 . . . . . . . . . 10 (𝑘 = 𝑚 → ([𝑘 / 𝑛]𝜓𝜃))
1413notbid 320 . . . . . . . . 9 (𝑘 = 𝑚 → (¬ [𝑘 / 𝑛]𝜓 ↔ ¬ 𝜃))
1514imbi2d 343 . . . . . . . 8 (𝑘 = 𝑚 → (((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜃)))
16 nfv 1915 . . . . . . . . . . 11 𝑛𝜏
17 nn0min.2 . . . . . . . . . . 11 (𝑛 = (𝑚 + 1) → (𝜓𝜏))
1816, 17sbhypf 3554 . . . . . . . . . 10 (𝑘 = (𝑚 + 1) → ([𝑘 / 𝑛]𝜓𝜏))
1918notbid 320 . . . . . . . . 9 (𝑘 = (𝑚 + 1) → (¬ [𝑘 / 𝑛]𝜓 ↔ ¬ 𝜏))
2019imbi2d 343 . . . . . . . 8 (𝑘 = (𝑚 + 1) → (((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜏)))
21 sbequ12r 2254 . . . . . . . . . 10 (𝑘 = 𝑛 → ([𝑘 / 𝑛]𝜓𝜓))
2221notbid 320 . . . . . . . . 9 (𝑘 = 𝑛 → (¬ [𝑘 / 𝑛]𝜓 ↔ ¬ 𝜓))
2322imbi2d 343 . . . . . . . 8 (𝑘 = 𝑛 → (((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜓)))
24 nn0min.3 . . . . . . . . 9 (𝜑 → ¬ 𝜒)
25 0nn0 11915 . . . . . . . . . 10 0 ∈ ℕ0
2611, 12sbiev 2330 . . . . . . . . . . . . . 14 ([𝑚 / 𝑛]𝜓𝜃)
27 nfv 1915 . . . . . . . . . . . . . . 15 𝑛𝜒
28 nn0min.0 . . . . . . . . . . . . . . 15 (𝑛 = 0 → (𝜓𝜒))
2927, 28sbhypf 3554 . . . . . . . . . . . . . 14 (𝑚 = 0 → ([𝑚 / 𝑛]𝜓𝜒))
3026, 29syl5bbr 287 . . . . . . . . . . . . 13 (𝑚 = 0 → (𝜃𝜒))
3130notbid 320 . . . . . . . . . . . 12 (𝑚 = 0 → (¬ 𝜃 ↔ ¬ 𝜒))
32 oveq1 7165 . . . . . . . . . . . . . . . 16 (𝑚 = 0 → (𝑚 + 1) = (0 + 1))
33 0p1e1 11762 . . . . . . . . . . . . . . . 16 (0 + 1) = 1
3432, 33syl6eq 2874 . . . . . . . . . . . . . . 15 (𝑚 = 0 → (𝑚 + 1) = 1)
35 1nn 11651 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
36 eleq1 2902 . . . . . . . . . . . . . . . 16 ((𝑚 + 1) = 1 → ((𝑚 + 1) ∈ ℕ ↔ 1 ∈ ℕ))
3735, 36mpbiri 260 . . . . . . . . . . . . . . 15 ((𝑚 + 1) = 1 → (𝑚 + 1) ∈ ℕ)
3817sbcieg 3812 . . . . . . . . . . . . . . 15 ((𝑚 + 1) ∈ ℕ → ([(𝑚 + 1) / 𝑛]𝜓𝜏))
3934, 37, 383syl 18 . . . . . . . . . . . . . 14 (𝑚 = 0 → ([(𝑚 + 1) / 𝑛]𝜓𝜏))
4034sbceq1d 3779 . . . . . . . . . . . . . 14 (𝑚 = 0 → ([(𝑚 + 1) / 𝑛]𝜓[1 / 𝑛]𝜓))
4139, 40bitr3d 283 . . . . . . . . . . . . 13 (𝑚 = 0 → (𝜏[1 / 𝑛]𝜓))
4241notbid 320 . . . . . . . . . . . 12 (𝑚 = 0 → (¬ 𝜏 ↔ ¬ [1 / 𝑛]𝜓))
4331, 42imbi12d 347 . . . . . . . . . . 11 (𝑚 = 0 → ((¬ 𝜃 → ¬ 𝜏) ↔ (¬ 𝜒 → ¬ [1 / 𝑛]𝜓)))
4443rspcv 3620 . . . . . . . . . 10 (0 ∈ ℕ0 → (∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏) → (¬ 𝜒 → ¬ [1 / 𝑛]𝜓)))
4525, 44ax-mp 5 . . . . . . . . 9 (∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏) → (¬ 𝜒 → ¬ [1 / 𝑛]𝜓))
4624, 45mpan9 509 . . . . . . . 8 ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ [1 / 𝑛]𝜓)
47 cbvralsvw 3469 . . . . . . . . . . 11 (∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏) ↔ ∀𝑘 ∈ ℕ0 [𝑘 / 𝑚](¬ 𝜃 → ¬ 𝜏))
48 nnnn0 11907 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
49 sbequ12r 2254 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ([𝑘 / 𝑚](¬ 𝜃 → ¬ 𝜏) ↔ (¬ 𝜃 → ¬ 𝜏)))
5049rspcv 3620 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (∀𝑘 ∈ ℕ0 [𝑘 / 𝑚](¬ 𝜃 → ¬ 𝜏) → (¬ 𝜃 → ¬ 𝜏)))
5148, 50syl 17 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (∀𝑘 ∈ ℕ0 [𝑘 / 𝑚](¬ 𝜃 → ¬ 𝜏) → (¬ 𝜃 → ¬ 𝜏)))
5247, 51syl5bi 244 . . . . . . . . . 10 (𝑚 ∈ ℕ → (∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏) → (¬ 𝜃 → ¬ 𝜏)))
5352adantld 493 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → (¬ 𝜃 → ¬ 𝜏)))
5453a2d 29 . . . . . . . 8 (𝑚 ∈ ℕ → (((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜃) → ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜏)))
557, 10, 15, 20, 23, 46, 54nnindf 30537 . . . . . . 7 (𝑛 ∈ ℕ → ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜓))
5655rgen 3150 . . . . . 6 𝑛 ∈ ℕ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜓)
57 r19.21v 3177 . . . . . 6 (∀𝑛 ∈ ℕ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ 𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ∀𝑛 ∈ ℕ ¬ 𝜓))
5856, 57mpbi 232 . . . . 5 ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ∀𝑛 ∈ ℕ ¬ 𝜓)
59 ralnex 3238 . . . . 5 (∀𝑛 ∈ ℕ ¬ 𝜓 ↔ ¬ ∃𝑛 ∈ ℕ 𝜓)
6058, 59sylib 220 . . . 4 ((𝜑 ∧ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏)) → ¬ ∃𝑛 ∈ ℕ 𝜓)
612, 60pm2.65da 815 . . 3 (𝜑 → ¬ ∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏))
62 imnan 402 . . . 4 ((¬ 𝜃 → ¬ 𝜏) ↔ ¬ (¬ 𝜃𝜏))
6362ralbii 3167 . . 3 (∀𝑚 ∈ ℕ0𝜃 → ¬ 𝜏) ↔ ∀𝑚 ∈ ℕ0 ¬ (¬ 𝜃𝜏))
6461, 63sylnib 330 . 2 (𝜑 → ¬ ∀𝑚 ∈ ℕ0 ¬ (¬ 𝜃𝜏))
65 dfrex2 3241 . 2 (∃𝑚 ∈ ℕ0𝜃𝜏) ↔ ¬ ∀𝑚 ∈ ℕ0 ¬ (¬ 𝜃𝜏))
6664, 65sylibr 236 1 (𝜑 → ∃𝑚 ∈ ℕ0𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  [wsb 2069  wcel 2114  wral 3140  wrex 3141  [wsbc 3774  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542  cn 11640  0cn0 11900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-ltxr 10682  df-nn 11641  df-n0 11901
This theorem is referenced by:  archirng  30819
  Copyright terms: Public domain W3C validator