| Step | Hyp | Ref
| Expression |
| 1 | | nn0min.4 |
. . . . 5
⊢ (𝜑 → ∃𝑛 ∈ ℕ 𝜓) |
| 2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ∃𝑛 ∈ ℕ 𝜓) |
| 3 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑚𝜑 |
| 4 | | nfra1 3266 |
. . . . . . . . . 10
⊢
Ⅎ𝑚∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏) |
| 5 | 3, 4 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑚(𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) |
| 6 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑚 ¬
[𝑘 / 𝑛]𝜓 |
| 7 | 5, 6 | nfim 1896 |
. . . . . . . 8
⊢
Ⅎ𝑚((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓) |
| 8 | | dfsbcq2 3768 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → ([𝑘 / 𝑛]𝜓 ↔ [1 / 𝑛]𝜓)) |
| 9 | 8 | notbid 318 |
. . . . . . . . 9
⊢ (𝑘 = 1 → (¬ [𝑘 / 𝑛]𝜓 ↔ ¬ [1 / 𝑛]𝜓)) |
| 10 | 9 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑘 = 1 → (((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ [1 / 𝑛]𝜓))) |
| 11 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛𝜃 |
| 12 | | nn0min.1 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (𝜓 ↔ 𝜃)) |
| 13 | 11, 12 | sbhypf 3523 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → ([𝑘 / 𝑛]𝜓 ↔ 𝜃)) |
| 14 | 13 | notbid 318 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → (¬ [𝑘 / 𝑛]𝜓 ↔ ¬ 𝜃)) |
| 15 | 14 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → (((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ 𝜃))) |
| 16 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛𝜏 |
| 17 | | nn0min.2 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑚 + 1) → (𝜓 ↔ 𝜏)) |
| 18 | 16, 17 | sbhypf 3523 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑚 + 1) → ([𝑘 / 𝑛]𝜓 ↔ 𝜏)) |
| 19 | 18 | notbid 318 |
. . . . . . . . 9
⊢ (𝑘 = (𝑚 + 1) → (¬ [𝑘 / 𝑛]𝜓 ↔ ¬ 𝜏)) |
| 20 | 19 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑘 = (𝑚 + 1) → (((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ 𝜏))) |
| 21 | | sbequ12r 2252 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → ([𝑘 / 𝑛]𝜓 ↔ 𝜓)) |
| 22 | 21 | notbid 318 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (¬ [𝑘 / 𝑛]𝜓 ↔ ¬ 𝜓)) |
| 23 | 22 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ [𝑘 / 𝑛]𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ 𝜓))) |
| 24 | | nn0min.3 |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝜒) |
| 25 | | 0nn0 12516 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
| 26 | 11, 12 | sbiev 2314 |
. . . . . . . . . . . . . 14
⊢ ([𝑚 / 𝑛]𝜓 ↔ 𝜃) |
| 27 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛𝜒 |
| 28 | | nn0min.0 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 0 → (𝜓 ↔ 𝜒)) |
| 29 | 27, 28 | sbhypf 3523 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 0 → ([𝑚 / 𝑛]𝜓 ↔ 𝜒)) |
| 30 | 26, 29 | bitr3id 285 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 0 → (𝜃 ↔ 𝜒)) |
| 31 | 30 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑚 = 0 → (¬ 𝜃 ↔ ¬ 𝜒)) |
| 32 | | oveq1 7412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 0 → (𝑚 + 1) = (0 + 1)) |
| 33 | | 0p1e1 12362 |
. . . . . . . . . . . . . . . 16
⊢ (0 + 1) =
1 |
| 34 | 32, 33 | eqtrdi 2786 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 0 → (𝑚 + 1) = 1) |
| 35 | | 1nn 12251 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℕ |
| 36 | | eleq1 2822 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 + 1) = 1 → ((𝑚 + 1) ∈ ℕ ↔ 1
∈ ℕ)) |
| 37 | 35, 36 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 + 1) = 1 → (𝑚 + 1) ∈
ℕ) |
| 38 | 17 | sbcieg 3805 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 + 1) ∈ ℕ →
([(𝑚 + 1) / 𝑛]𝜓 ↔ 𝜏)) |
| 39 | 34, 37, 38 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 0 → ([(𝑚 + 1) / 𝑛]𝜓 ↔ 𝜏)) |
| 40 | 34 | sbceq1d 3770 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 0 → ([(𝑚 + 1) / 𝑛]𝜓 ↔ [1 / 𝑛]𝜓)) |
| 41 | 39, 40 | bitr3d 281 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 0 → (𝜏 ↔ [1 / 𝑛]𝜓)) |
| 42 | 41 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑚 = 0 → (¬ 𝜏 ↔ ¬ [1 / 𝑛]𝜓)) |
| 43 | 31, 42 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑚 = 0 → ((¬ 𝜃 → ¬ 𝜏) ↔ (¬ 𝜒 → ¬ [1 / 𝑛]𝜓))) |
| 44 | 43 | rspcv 3597 |
. . . . . . . . . 10
⊢ (0 ∈
ℕ0 → (∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏) → (¬ 𝜒 → ¬ [1 / 𝑛]𝜓))) |
| 45 | 25, 44 | ax-mp 5 |
. . . . . . . . 9
⊢
(∀𝑚 ∈
ℕ0 (¬ 𝜃
→ ¬ 𝜏) → (¬
𝜒 → ¬ [1 /
𝑛]𝜓)) |
| 46 | 24, 45 | mpan9 506 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ [1 / 𝑛]𝜓) |
| 47 | | cbvralsvw 3296 |
. . . . . . . . . . 11
⊢
(∀𝑚 ∈
ℕ0 (¬ 𝜃
→ ¬ 𝜏) ↔
∀𝑘 ∈
ℕ0 [𝑘 /
𝑚](¬ 𝜃 → ¬ 𝜏)) |
| 48 | | nnnn0 12508 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
| 49 | | sbequ12r 2252 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → ([𝑘 / 𝑚](¬ 𝜃 → ¬ 𝜏) ↔ (¬ 𝜃 → ¬ 𝜏))) |
| 50 | 49 | rspcv 3597 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ (∀𝑘 ∈
ℕ0 [𝑘 /
𝑚](¬ 𝜃 → ¬ 𝜏) → (¬ 𝜃 → ¬ 𝜏))) |
| 51 | 48, 50 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ →
(∀𝑘 ∈
ℕ0 [𝑘 /
𝑚](¬ 𝜃 → ¬ 𝜏) → (¬ 𝜃 → ¬ 𝜏))) |
| 52 | 47, 51 | biimtrid 242 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ →
(∀𝑚 ∈
ℕ0 (¬ 𝜃
→ ¬ 𝜏) → (¬
𝜃 → ¬ 𝜏))) |
| 53 | 52 | adantld 490 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ → ((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → (¬ 𝜃 → ¬ 𝜏))) |
| 54 | 53 | a2d 29 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ → (((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ 𝜃) → ((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ 𝜏))) |
| 55 | 7, 10, 15, 20, 23, 46, 54 | nnindf 32798 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → ((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ 𝜓)) |
| 56 | 55 | rgen 3053 |
. . . . . 6
⊢
∀𝑛 ∈
ℕ ((𝜑 ∧
∀𝑚 ∈
ℕ0 (¬ 𝜃
→ ¬ 𝜏)) → ¬
𝜓) |
| 57 | | r19.21v 3165 |
. . . . . 6
⊢
(∀𝑛 ∈
ℕ ((𝜑 ∧
∀𝑚 ∈
ℕ0 (¬ 𝜃
→ ¬ 𝜏)) → ¬
𝜓) ↔ ((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ∀𝑛 ∈ ℕ ¬ 𝜓)) |
| 58 | 56, 57 | mpbi 230 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ∀𝑛 ∈ ℕ ¬ 𝜓) |
| 59 | | ralnex 3062 |
. . . . 5
⊢
(∀𝑛 ∈
ℕ ¬ 𝜓 ↔ ¬
∃𝑛 ∈ ℕ
𝜓) |
| 60 | 58, 59 | sylib 218 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑚 ∈ ℕ0 (¬ 𝜃 → ¬ 𝜏)) → ¬ ∃𝑛 ∈ ℕ 𝜓) |
| 61 | 2, 60 | pm2.65da 816 |
. . 3
⊢ (𝜑 → ¬ ∀𝑚 ∈ ℕ0
(¬ 𝜃 → ¬ 𝜏)) |
| 62 | | imnan 399 |
. . . 4
⊢ ((¬
𝜃 → ¬ 𝜏) ↔ ¬ (¬ 𝜃 ∧ 𝜏)) |
| 63 | 62 | ralbii 3082 |
. . 3
⊢
(∀𝑚 ∈
ℕ0 (¬ 𝜃
→ ¬ 𝜏) ↔
∀𝑚 ∈
ℕ0 ¬ (¬ 𝜃 ∧ 𝜏)) |
| 64 | 61, 63 | sylnib 328 |
. 2
⊢ (𝜑 → ¬ ∀𝑚 ∈ ℕ0
¬ (¬ 𝜃 ∧ 𝜏)) |
| 65 | | dfrex2 3063 |
. 2
⊢
(∃𝑚 ∈
ℕ0 (¬ 𝜃
∧ 𝜏) ↔ ¬
∀𝑚 ∈
ℕ0 ¬ (¬ 𝜃 ∧ 𝜏)) |
| 66 | 64, 65 | sylibr 234 |
1
⊢ (𝜑 → ∃𝑚 ∈ ℕ0 (¬ 𝜃 ∧ 𝜏)) |